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Abstract

This paper develops a general equilibrium model of competing platforms that profit
from targeted advertising. In the model, platforms offer consumers quality services at
zero prices in exchange for attention. Platforms then monetize the attention by sell-
ing targeted ads to firms in the product market. The model shows how ad revenue,
the quality of platforms’ services, and the product market allocation are determined in
equilibrium. I find that a multi-sided analysis is critical: intuitive comparative statics
based on single-sided analyses can flip, short-run effects of policies may differ dras-
tically from long-run effects, and policies must balance tradeoffs across the market
sides. I illustrate these lessons in the context of data and interoperability policies, two
of the leading regulatory tools.

In the past two decades, the various platforms on the Internet that profit from targeted

advertising have become a large and important part of the economy.1 Though these plat-

forms offer distinct services, many say that they compete in a broader “market for attention"

(Evans, 2020). Some key stylized features of this market are as follows.

1. Platforms provide distinct services (social media, streaming, podcasts etc.) to con-

sumers often at a zero price.
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and Bob Wilson for their suggestions and helpful comments. I am also thankful to Mohammad Akbarpour,
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Carnehl, Cindy Chung, Sebastian Di Tella, Ravi Jagadeesan, Ramesh Johari, Chad Jones, Bruno Jullien, Nadia
Kotova, David Kreps, Ernest Liu, Alessandro Lizzeri, Moritz Lenel, Erik Madsen, Suraj Malladi, Matthew
Mitchell, Mike Ostrovsky, David Ritzwoller, Marzena Rostek, Karthik Sastry, Takuo Sugaya, Timur Sobolev,
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1See https://www.iab.com/wp-content/uploads/2023/04/IAB_PwC_Internet_
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digital-2024-deep-dive-the-time-we-spend-on-social-media.

1

https://www.iab.com/wp-content/uploads/2023/04/IAB_PwC_Internet_Advertising_Revenue_Report_2022.pdf
https://www.iab.com/wp-content/uploads/2023/04/IAB_PwC_Internet_Advertising_Revenue_Report_2022.pdf
https://datareportal.com/reports/digital-2024-deep-dive-the-time-we-spend-on-social-media
https://datareportal.com/reports/digital-2024-deep-dive-the-time-we-spend-on-social-media


2. Platforms compete for attention by investing in the quality of their services.2

3. Platforms earn revenue by selling advertisements (ads) to firms in the product market.

4. Platforms sell ads via consumer-specific auctions that arise in real time as consumers

engage with platforms’ services.

5. Platforms provide firms with data on consumers when firms bid in ad auctions.

This paper develops a general equilibrium model with a platform sector that is consis-

tent with these features. Because the model is in general equilibrium, it also includes an

endogenous product market. We can therefore calculate the welfare impact of platforms

from their roles in both features 1 and 3 in a single internally consistent model. I use the

model to analyze the effects of policies and to compare the equilibrium to an economy under

a beneficent planner. A distinctive property of my analysis is that it accounts for interactions

among each of the sides of the market for attention, including the product market.3

The model is a reaction to three points that often come up in regulatory discussion. First,

traditional competition policy relies heavily on markups as a gauge of market efficiency

(OECD, 2022; Wu, 2018). Regulators are in need of competition analysis that applies to

zero-price markets. Second, the market for attention is complex and multisided: the product

market allocation, ad revenue, and the quality of platforms are jointly determined. It is thus

difficult to assess the net effects of a policy without a formal model. Third, many leading

policies relate to data and platform interoperability (OECD, 2022, 2020). Interoperability

refers to the extent that platforms can communicate or work with each other. A lack of

interoperability limits platform substitutability and inhibits competition (OECD, 2022).

The model I develop shows how outcomes on each of the market sides are determined in

equilibrium and how they depend on data and platform substitutability. I find that data and

interoperability policies typically must trade off allocative efficiency in the product market

with the quality of platforms’ services. Also, spillovers across the market sides can be

strong and lead to counterintuitive effects. For example, in the short run, an interoperability

policy can lead platforms to invest less in the quality of their services and in the long run,

relaxing data privacy laws can lead to lower platforms’ profits. Further, these effects can

flip, depending on the time horizon, as shocks gradually propagate across the market sides:

in the long run, an interoperability policy leads to greater investment by platforms and in the

short run, relaxing data privacy laws typically leads to higher platforms’ profits. Whether

2Platforms that charge zero prices typically compete in quality (OECD, 2018; Ambrus et al., 2016).
3With abuse of terminology, I will refer to the product market as one of the “market sides."
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policies are, in the end, beneficial will often depend on the economy’s ex ante efficiency. I

derive a sufficient statistic to gauge the efficiency of equilibrium investment in the model.

To develop a tractable general equilibrium analysis, I must make some modeling con-

cessions. In particular, I model platforms that are monopolistic competitors: each platform

is the dominant player in its category of service and thus has market power, but is small

relative to the entire platform sector. This allows me to abstract from complicated strategic

interactions but I may omit potentially important effects for platforms that are large relative

to the sector.4 I also assume that the product and platform sectors both have a constant-

elasticity-of-substitution (CES) structure. This implies that firms charge a fixed markup

on products and have no incentives to personalize prices. Nonetheless, the model is able

to shed light on some basic issues that can not be addressed by other models at this time,

which generally treat one or more of the market sides as exogenous.

In the model, consumers are aware of only some firms in the product market. Platforms

facilitate search and matching by displaying ads for firms’ products to consumers. As in

common practice, each platform sells ads, at the individual consumer level, via auctions

that arise dynamically as consumers engage with its services. A platform displays ads to a

consumer at a Poisson rate per unit of attention that it receives from the consumer. To be

able to sell more ads, each platform competes to attract attention by investing in the quality

of its services. Each platform is endowed with data on consumers’ preferences for products

that it supplies to firms when firms bid. Consumers derive higher flow utility from paying

attention to higher quality platforms but dislike viewing ads. Each consumer has a taste for

variety and splits a unit of attention among the platforms. To ensure that frictions persist in

the long run, I assume that consumers gradually “forget” about firms whose ads they have

seen, at independent exponential times.

In equilibrium, a firm matches with (i.e, shows its ad to) a given consumer more quickly

when platforms display ads at a faster rate. Firms also match with consumers who value

their products highly more quickly when data is more informative. Ceteris paribus, the

longer it takes firms to match with consumers, the greater the profit that platforms extract

in each ad auction. Thus, search frictions are a source of platform market power. Platforms

therefore typically invest more and are of higher quality when the product market is less

efficient. In equilibrium, a key state variable is the distribution of consumers’ values for

firms in their consideration sets. This distribution evolves gradually as consumers discover

and forget firms and so the economy has a potentially lengthy transition to steady state.

4In 2023, Meta earned roughly 23 percent of global digital ad revenue. YouTube earned 5.5 percent. X,
TikTok, Snapchat, Pinterest, Twitch and many others each earned far less. For more stats, see footnote 32.
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I consider two policy experiments whose effects I trace out over time and across the

market sides. In the first experiment, an interoperability mandate leads to an increase in

platform substitutability.5 The goal is to encourage platforms to invest in better quality

services by giving consumers a meaningful choice of how to spend their attention.6 In the

short run, platforms reduce their ad rates because attention is now more sensitive and con-

sumers dislike viewing ads. This turns out to cause ad revenues to decline and so platforms

actually invest less. In the long run, these effects reverse. First, it takes longer for a firm

to match with a consumer in the future if it loses an ad auction for that consumer. Second,

firms face competition from fewer rivals in consumers’ consideration sets. Both of these

factors raise a firm’s present value for an ad. Firms therefore bid more to the extent that ad

revenue is higher than before the shock. This, in turn, incentivizes platforms to invest more.

In the end, platforms are of higher quality but the product allocation is less efficient.

In the second experiment, a new policy relaxes existing privacy laws, giving platforms

access to more informative data.7 Initially, platforms’ profits increase because winning

firms are on average more highly valued by consumers and platforms are able to extract

some of this surplus gain. However, this effect reverses in the long run. First, firms face

stronger competition as consumers’ consideration sets fill up with firms that are more highly

valued on average than before. Second, it takes less time for firms to match with consumers

who value their products highly in the future. Both factors reduce a firm’s present value

for an ad, ultimately leading ad revenues (and platforms’ profits) to decrease. In the end,

platforms invest less and are of lower quality though the product allocation is more efficient.

The counterintuitive result that giving all platforms access to better data may reduce

their profits relies on the impact of data on competition in the product market. To offer

suggestive evidence, I show that, because of this channel, an extended version of the model

can rationalize two empirical trends many consider puzzling (Silk et al., 2021). Namely,

(i) digital advertising as a share of ad revenue has grown dramatically in the past decade at

the expense of traditional advertising; (ii) total ad revenue as a fraction of gross domestic

product (GDP) has declined slightly in the past decade despite the rise of digital platforms

with their unprecedented abilities to use consumer data for ad targeting.

I next compare the equilibrium to the economy of a beneficent planner who sets the

rates that platforms invest and display ads. I find that the two key sources of inefficiency are

businesses-stealing externalities and appropriability issues. Namely, platforms internalize

5E.g., the mandate could be that platforms now must let users post links to content on other platforms.
6“Interoperability is a key aspect of many digital platform services, as it gives users access to a wide range

of choices" (OECD, 2021).
7Examples of privacy laws are General Data Protection Regulation and California Consumer Privacy Act.
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the nuisance costs of ads or the benefits of their investments only to the extent that they can

steal ad revenue from each other. This is so because they do not appropriate any surplus

that they generate for consumers with their services because they charge zero prices. For the

case when consumers have Cobb-Douglas utility over a CES product aggregate and a CES

platform aggregate, I derive a simple sufficient statistic (that depends on only ad revenue,

income, the product markup, platform substitutability, and the utility parameter) that can

gauge the efficiency of equilibrium investment.

In the online appendices, I explore several extensions of the baseline model, including:

(i) network effects (i.e., a consumer’s utility from platform use depends on attention allo-

cated by other consumers); (ii) firm and platform entry; (iii) ad auction reserve prices; (iv)

heterogeneity in platform data; (v) heterogeneity in platform productivity.

1. Related Literature

This paper contributes to the literature on platforms and two-sided markets. Early sem-

inal work by Rochet & Tirole (2003), Caillaud & Jullien (2003), Armstrong (2006), and

others study platforms’ pricing decisions in abstract settings with broad applications. In

these models, the surplus generated by interactions of agents on the two sides of the market

is typically exogenous or not microfounded. For a survey of this literature, see Jullien et al.

(2021). Subsequent work has studied models more closely tailored to modern advertising

platforms, often with a role for consumer data (e.g., Ambrus et al. 2016; Bergemann et al.

2019; Bergemann & Bonatti 2023; Prat & Valletti 2021; Galperti & Perego 2022; Jullien

& Bouvard 2022). However, these papers do not simultaneously endogenize the product

market and provision of content by platforms. Also, these papers typically consider either

one or two platforms (whereas I consider the other extreme of monopolistic competition).

Another related paper is Kirpalani & Philippon (2021) which models a monopolistic

platform that matches consumers with firms using data on consumers’ preferences. Kir-

palani & Philippon (2021) analyze issues related to consumers sharing data with the plat-

form. Because they focus on online marketplaces like Amazon (which fall outside the scope

of my analysis), they do not incorporate platform content provision.

This paper also relates to a long literature on traditional advertising. For a survey, see

Bagwell (2007). Most papers do not model endogenous content provision to attract con-

sumers. An important exception is Anderson & Coate (2005) upon which many subsequent

models that do this are based. They study investment by platforms on the extensive margin

in the form of entry costs. They likewise identify appropriability issues and business steal-
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ing as sources of inefficiency. In their model, firms extract all surplus from consumers who

have binary types so there is no benefit to consumers from advertising. They study the case

of either one or two platforms in a static setup with no role for data or ad targeting.

This paper also relates to the literature on ad auctions (e.g., Edelman et al. 2007; Athey

& Ellison 2011; Varian 2007). These models usually do not include the product market.

More informative data is shown to typically raise ad revenue (Board, 2009; Bergemann

et al., 2021; Hummel & McAfee, 2016). I find that the opposite can be true in the long run

due to competition in the product market. My model may also be of interest to empirical re-

searchers using ad auction data to measure the effects of privacy policies (Alcobendas et al.,

2021; Johnson et al., 2020; Beales & Eisenach, 2014; Marotta et al., 2019). A structural

model may be useful for welfare and counterfactual analysis.

There is a growing body of work that studies the role of data and markets for data in the

macroeconomy (Jones & Tonetti, 2020; Farboodi & Veldkamp, 2021). These papers focus

on the nonrival property of data and the implications for growth. They do not explicitly

model platforms according to the definition in Hagiu & Wright (2015). A contemporaneous

paper Cavenaile et al. (2023) builds a macroeconomic model of targeted advertising with

evolving product awareness but does not include platforms. Also related is Rachel (2021)

which studies the macroeconomic effects of leisure-enhancing technological change in a

model where consumer attention is monetized to finance zero-price products.

In terms of methodology, this paper combines elements from the Melitz (2003) model of

international trade with firm heterogeneity, the Duffie et al. (2005) model of trade in over-

the-counter markets, and the Wolinsky (1988) model of dynamic auctions. As in Melitz

(2003), I model a CES product market to tractably incorporate firm heterogeneity and en-

try/exit dynamics. One can show that the heterogeneity in firms’ production costs in Melitz

(2003) is isomorphic to heterogeneity in consumers’ values for firms’ products.

As in Duffie et al. (2005), I rely on search frictions to explain the existence of interme-

diaries. Like the dealers in Duffie et al. (2005), platforms extract more rents when it takes

longer for firms to find consumers. As match delay vanishes, the equilibrium of both of our

models converges to that of a classical frictionless benchmark.

When there are search and matching frictions, prices can not be determined in a Wal-

rasian way. Following Wolinsky (1988), I combine search and matching with auctions. In

contrast to Wolinsky (1988), the auction model is tailored to fit the microstructure of bid-

ding in online ad auctions. In Wolinsky (1988), once a buyer wins an auction hosted by a

seller, both leave the market. In my model, firms advertise to the same consumers over and

over again. Whereas Wolinsky (1988) analyzes steady state, I solve for the full dynamics.
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2. The Baseline Model

Time t ∈ [0,∞). There is a unit measure of consumers i ∈ 𝕀.8 The economy has two

sectors. The product sector contains a measure J of monopolistically competitive firms

j ∈ 𝕁. The platform sector contains a measure K of monopolistically competitive platforms

k ∈ 𝕂. Firms profit by selling products to consumers. Platforms profit by selling targeted

ads for products which they display to consumers. To attract consumer attention, platforms

provide valuable services (e.g., social media, streaming, podcasts) to consumers at zero

prices. Each platform competes for attention by investing in the quality of its services.

Consumers’ Preferences.—Consumer i has preferences

Ui =
∫ ∞

0
e− 𝜌tu(Cit , Xit) dt

where 𝜌 > 0, u is increasing, Cit is a product aggregate, and Xit is a platform aggregate.

Given consumption {ci jt} of individual products,

Cit =
[∫

𝕁

v
1
𝜎

i j c
𝜎−1
𝜎

i jt d j
] 𝜎

𝜎−1

where 𝜎 > 1 is product substitutability and {vi j} are tastes or values for products. Each

vi j is an independent draw from the cumulative distribution function (cdf) F supported on

[0,∞). I assume that F has a finite mean.

Given consumption {xikt} of individual platforms,

Xit =
[∫

𝕂

(𝜈 (akt)qktxikt)
𝜖−1
𝜖 dk

] 𝜖
𝜖−1

where 𝜖 > 1 is platform substitutability and {qkt} are the quality levels of platforms’ ser-

vices. Platform k’s quality is multiplied by the factor 𝜈 (akt) where akt is the rate that

platform k displays ads and 𝜈 is positive and weakly decreasing. Thus, ads are nuisances

that reduce effective platform quality.

Consumers’ Problem.—Consumer i selects product and platform consumption at each

time t. With respect to these choices, products and platforms differ in two key ways: 1.

Consumer i is aware of all platforms but only some firms Ωit ⊂ 𝕁. As I soon describe,

the consideration set Ωit evolves as she views ads on platforms; 2. Firms charge positive

8To be concrete, let 𝕀, 𝕁, and 𝕂 be intervals in ℝ.
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prices (set optimally) but platforms charge zero prices (set exogenously) and instead require

attention to consume.

At each t, consumer i has I units of income to spend on products and a unit of attention

to spend on platforms. To simplify the analysis, I assume she does not allocate attention to

purposefully view ads—i.e., she does not internalize how platform use affects her consid-

eration set in the future. (In equilibrium this is without loss of optimality as all platforms

display ads at the same rate so how she splits attention among them has no effect on her

consideration set.) She therefore maximizes flow utility which simplifies to

max
{ci jt }

Cit s.t
∫
Ωit

ci jtp jt d j ≤ I ; ci jt = 0, ∀ j ∉ Ωit

max
{xikt }

Xit s.t
∫
𝕂

xikt dk ≤ 1.

The choices of the two types of consumption separates in this way because platforms charge

zero prices. As a result, u does not appear anywhere and there is no link between the

marginal utilities for product consumption and platform consumption, a fundamental source

of inefficiency in the model (discussed in Section 7). Further, note that all consumers choose

attention in the same way, so in what follows, I omit the index i on xikt .

Size of Consideration Sets.—While using platform k, consumer i views ads for products

at a Poisson rate aktxikt . Each time an ad is viewed, the relevant firm enters the consideration

set. By the law of large numbers (LLN), firms flow into Ωit at rate9

At =
∫
𝕂

aktxkt dk.

To ensure that frictions persist in the long run, I assume that once inside Ωit , a firm is

forgotten at an independent exponential time with rate 𝜆 f . Thus, by the LLN, the mass Mt

of firms in Ωit evolves according to

¤Mt = At − 𝜆 fMt (1)

starting from an initial condition M0 < J that I assume is common to all consumers. Since

(1) applies for all i, I do not index Mt by i. Also, note that (1) applies only if Mt < J . I

impose conditions on parameters so that this is always so in Section 4.

Ad Auctions.— To determine which ads to show which consumers, platforms host auc-

9I assume a LLN throughout. I expect a LLN can be proven using methods in Duffie et al. (2020).
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tions. Each time platform k has an opportunity to display an ad to consumer i it initiates a

second-price auction with no reserve price.10 Platform k then sends out requests to firms to

submit bids. Due to latency, only N > 1 firms are able to respond within the instant. For

simplicity, N is exogenous and deterministic. The N firms are drawn uniformly at random

from outside the consumer’s consideration set. I assume only firms outside Ωit submit bids

to obtain analytical solutions for equilibrium bidding strategies. However, the economic

mechanisms behind the main results do not hinge on this assumption.11

Data.—To be able to study the implications of data policies, I assume that platforms

send firms data on consumers along with their bid requests. For the baseline model, all

platforms have the same data though I allow for heterogeneity in Section 6. Data are mod-

eled as Blackwell experiments on consumers’ values for products. It will suffice to specify

only the distribution of firms’ posterior expectations of consumers’ values conditional on

the data. I assume that firm j’s expectation v̂i j of consumer i’s value vi j is drawn from a

continuous cdf G independently across i and j. I also assume that G is a mean-preserving

contraction of the prior F , which by Blackwell (1953) is a necessary and sufficient condi-

tion for there to exist some underlying data that generatesG. Firms’ expectations are drawn

at t = 0 and fixed thereafter.12

Composition of Consideration Sets.—In each auction for consumer i, each firm sub-

mits its bid after observing the data on the consumer. The firm that bids the most pays

the second-highest bid and then displays its ad to the consumer at the end of the instant.

Suppose that the winning firm in each auction is also the firm with the highest expectation

of the consumer’s value for its product, as will be the case in equilibrium. Let Ht denote

the cdf of the expected values of firms in Ωit and H c
t the cdf for the complement Ωcit . Then,

starting from a given initial H0 common to all consumers,

¤(MtHt) = At (H c
t )N − 𝜆 fMtHt . (2)

In (2), the cdf of expected values flowing in is (H c
t )N since these firms are the winners in

the auctions while the cdf flowing out is Ht since each firm is forgotten at the same rate.

10Revenue equivalence holds in the model so the results extend to any other standard auction format and in
online Appendix J, I analyze a version of the model where platforms set reserve prices.

11Since only firms outside the consideration set have a positive value for the ad opportunity, this amounts
to an assumption that firms know whether they are currently in consideration. In practice, firms have some
knowledge of consumers’ consideration sets by tracking consumer visits to their retail websites.

12That is, firms do not observe consumer i’s past purchase history as otherwise they could infer her values
for their products perfectly. For example, consumers might browse firms’ retail website but make purchases in
the brick and mortar store. Future work may explore a setup with time-varying values and learning.

9



By accounting, Ht and H c
t must satisfy the identity

MtHt + ( J −Mt)H c
t = JG (3)

which states that the frequency distribution of expected values in Ωit added to that outside

Ωit must coincide with that of the whole population. As with Mt , I do not index Ht and H c
t

by i since (2) applies to all consumers. To ensure that M0 and H0 are feasible, I assume

that M0 dH0 ≤ J dG since there can not be more firms with a given expectation in Ωit than

there are in the entire economy.

Firms.—Each firm maximizes the net-present-value (NPV) of its flow profits. Firms

each produce at a constant marginal cost that I set as the economy’s numeraire. A firm’s

static problem is to set a price for its product. In equilibrium, given Mt and Ht , consumer

i’s demand ci jt for product j is a known function ct (vi j , p jt) of her value vi j and the price

p jt .13 Firm j sets p jt to maximize the expected flow profit from selling to a consumer:

𝜋𝕁t (v̂i j) = max
p jt

𝔼
[
(p jt − 1)ct (vi j , p jt) |v̂i j

]
.

Firm j’s dynamic problem is to set bids in the ad auctions. The problem is dynamic

because of the outside option to wait to bid in future auctions for a given consumer which

limits a firm’s willingness to pay in any given auction. To state the problem formally, let

𝜆 at =
NAt
J −Mt

(4)

denote the Poisson rate that a firm enters an auction for a given consumer i while outside

Ωit . This is the total rateNAt that bid responses are collected divided by the measure J−Mt

of firms that are eligible to respond. Let 𝜏z denote the zth time of entry into an auction for

consumer i.14 In equilibrium, firm j takes as given the bidding strategies of its rivals which

are of the following form. At time t, each firm l bids according to an increasing function Bt
that maps firm l’s expectation v̂il to a bid Bt (v̂il) in an auction for consumer i at time t.

Taking Bt as given, firm j sets bids to maximize the NPV of flow profits (including the

costs of advertising) from selling to a typical consumer i:

Π𝕁 = max
{bz }

𝔼

[∫ ∞

0
e− 𝜌s𝜋𝕁s (v̂i j)1{ j∈Ωi s } ds −

∞∑︁
z=1

e− 𝜌𝜏zB𝜏z

(
v̂ (1)
z

)
1{

bz>B𝜏z

(
v̂ (1)z

)}]
13The price p jt may depend on v̂i j but I later show it is optimal for firm j not to personalize prices.
14𝜏z is the zth arrival of a Poisson process that ticks at rate 𝜆 at + 𝜆 f 1{ j∈Ωit } .

10



where v̂ (1)z is the highest expectation of the N − 1 other bidders in the zth auction: v̂ (1)z ∼(
H c

𝜏z

)N−1 conditional on 𝜏z. Above, the bid bz in the zth auction is a measurable function of

the expectation v̂i j and time t.

Platforms.—Each platform maximizes the NPV of its flow profits. Given Bt , the aver-

age ad price is 𝔼
[
Bt

(
v (2)t

)]
where v (2)t denotes the second highest of N independent draws

from the cdf H c
t . At each t, platform k sets its ad rate to maximize its flow profits

𝜋𝕂t (qkt) = max
akt

𝔼
[
Bt

(
v (2)t

)]
aktxkt (akt , qkt)

taking as given the dependence of attention on its ad rate and quality. In later sections, I

abuse notation and let 𝜋𝕂t also denote the average ad price 𝔼
[
Bt

(
v (2)t

)]
.

Platform k’s dynamic problem is to set a path for investment ℓkt to solve

Π𝕂 = max
{ℓkt }

∫ ∞

0
e− 𝜌t (𝜋𝕂t (qkt) − ℓkt) dt

subject to the law of motion of its quality

¤qkt = ℓ
𝜑

kt − 𝛿qkt

which starts at an initial level, common to all platforms, of qk0 = q0. I assume 𝜑 < 1
so there are decreasing returns. Absent investment, quality depreciates at rate 𝛿 as the

platform’s content grows stale or less relevant over time. These assumptions are necessary

for the existence of a long run stationary level of quality in equilibrium.

Equilibrium Concept.—An equilibrium for the economy with initial conditionsM0,H0,

and q0 is a collection of processes for product demands {ci jt}, platform demands {xkt}, the

mass of varieties in consideration sets {Mt}, the cdf of the expected values of consumers

for those varieties {Ht}, prices {p jt}, bidding functions {Bt}, ad rates {akt}, investment

rates {ℓkt}, and quality levels {qkt} such that consumers, firms, and platforms solve their

respective problems and {Mt}, {Ht}, and {qkt} satisfy their respective laws of motion.15

To simplify the exposition, I have introduced the baseline model in partial equilibrium

with the income I of consumers exogenously given. I consider the full general equilibrium

model in Section 7 when I analyze welfare. The full model is just as tractable (see online

Appendix C) and all of the main qualitative results of the baseline model extend to it.

15I have defined equilibrium with firms bidding symmetrically for ease of exposition. One can extend the
definition to allow firms to bid asymmetrically, but, only symmetric bidding equilibria exist.
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3. Discussion of the Model

The model is designed to study how outcomes on each of the market sides are deter-

mined in equilibrium and how they might evolve together in response to policies. Below, I

briefly comment on several modeling decisions.

Monopolistic Competition.—Each platform has market power and offers a unique type

of content, but is small relative to the whole sector. When substitutability 𝜖 is high, each

platform may represent a small website on the Internet. When 𝜖 is low, each platform may

represent the dominant player in its content category, effectively holding captive its share

of consumer attention. In either case, however, there are no strategic interactions among

platforms and each platform individually has no impact on consideration sets or firms’

continuation payoffs. Thus, I may be abstracting from effects that are relevant for platforms

that are large relative to the whole sector.16 This sacrifice enables a tractable analysis that

isolates the role of interactions among the market sides, the main focus of this paper.

Dynamics.—A dynamic model allows me to show how endogenous search and match-

ing frictions in the product market affect platforms’ profits and serve as a source of market

power. An implication of these frictions (beyond explaining the existence of platforms) is

the economy’s gradual adjustment dynamics: I compare the short run and long run effects

of policies which I find may differ dramatically. This is especially important as transition

dynamics can be slow. Further, the long run outcomes do not depend on any ad hoc as-

sumptions on initial conditions. Dynamics also has methodological advantages: there does

not exist a symmetric bidding equilibrium if a firm can participate in multiple auctions for

a given consumer at a given time. I avoid this issue by spreading competition out dynami-

cally. Because the reasons for this are technical I discuss them in online Appendix B. There,

I also discuss issues with other static setups, including setups with a Walrasian ad market.17

Zero Prices for Platforms’ Services.—Zero prices are common, but not universal. In

online Appendix E, I show zero prices emerge endogenously, for a range of parameters,

in a model variant where platforms can charge nonnegative prices (see also Corrao et al.

(2023)). Zero prices are often cited as a challenge for regulators who traditionally rely

on markups to gauge market efficiency (Khan, 2017; OECD, 2022). Rather than through

prices, platforms often compete through quality (Ambrus et al., 2016; OECD, 2018).
16In 2023, Meta (Facebook and Instagram) earned roughly 23 percent of global digital ad revenue. YouTube

earned 5.5 percent. X, TikTok, Snapchat, Pinterest, Twitch, Spotify and many others each earned far less. Even
when excluding search-engine advertising, the numbers are qualitatively the same: see footnote 32.

17There are issues with modeling data with a Walrasian ad market. For example, I would not be able to
extend model to study data heterogeneity (see Section 6) as elaborated on in online Appendix D.
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The Role of Advertising.—Advertising, in the model, is informative. This is a common

assumption though other roles of advertising have been proposed in the literature. For

example, one view is that advertising is persuasive and alters consumers’ tastes. Though

these and other effects are potentially important, they are beyond the scope of this paper.

Other Assumptions.—The analysis, at least for steady state, can be easily extended to

include an outside option for attention and a consumption-savings tradeoff (under standard

homotheticity assumptions on flow utility u). CES preferences for products is a more crit-

ical assumption for tractability because it ensures that prices are a fixed markup and there

are no incentives to personalize prices. In online Appendices F-J, I study, in separate ex-

tensions, heterogeneity in platform data, heterogeneity in platform productivity, network

effects, firm and platform entry, and reserve prices.

4. The Equilibrium

The objective of this section is to present the main properties of the equilibrium, provide

intuition for them, and give some sense of how they are derived. These properties are

summarized below in Theorem 1. In what follows, I walk through each part of Theorem 1

in succession, and in the process, sketch the proof of the theorem. The intuition developed

here is critical to understand the results of later sections.

Theorem 1. Suppose that A is the unique solution of maxa a𝜈 (a)𝜖−1. If A/𝜆 f < J and

𝜖 − 1 < 1/𝜑, then there exists a unique equilibrium for any feasible initial conditions M0,

H0, and q0. The equilibrium converges to a steady state and has the following properties:

1. Consumers’ demands for products and platforms are as in (5) and (6) respectively.

2. Firms’ prices are as in (8).

3. Platforms’ ad rates are as in (9).

4. The mass of firms in Ωit and the cdf of expected values in Ωit are characterized by

(10) and (11) respectively given accounting identity (3).

5. Firms’ expected flow profits from selling to consumer i and Poisson rates of entry into

Ωit are as in (12) and (13) respectively.

6. Firms bid according to (14) and the average ad price is (15).

7. Platforms’ investment rates and quality levels solve the boundary-value problem (16).
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8. Consumer, firm, and platform surplus are as in (17), (18), and (19) respectively.

Moreover, the sufficient conditions are almost necessary: if either A/𝜆 f ≥ J or 𝜖−1 > 1/𝜑,

then an equilibrium does not exist.

Solving for the equilibrium (i.e., proving Theorem 1) may appear difficult because out-

comes on the different market sides are mutually determined and agents must forecast the

future paths of consideration sets which themselves depend on agents’ actions. However,

the model is set up so that each component speaks to the others in as minimal a way as pos-

sible so that the model is solvable nearly explicitly while remaining internally consistent. I

sketch the proof of Theorem 1 below, step-by-step, using objects derived in previous parts

to derive objects in subsequent parts.

Step 1: Consumers’ Demands.—Consumer i’s CES preferences imply a demand for

product j ∈ Ωit of

ci jt =
Ivi j∫

Ωit
vizp1−𝜎

zt dz
p−𝜎jt (5)

and a demand for platform k ∈ 𝕂 of

xkt =
[𝜈 (akt)qkt]𝜖−1∫

𝕂
[𝜈 (azt)qzt]𝜖−1dz

. (6)

Her demand for product j is increasing in her income I and her value vi j for the product. It

is decreasing in her values for the rival products in the consideration set. The elasticity of

demand with respect to firm j’s price is higher when 𝜎 is higher. Similarly, her demand for

platform k is increasing in the effective quality 𝜈 (akt)qkt of the platform and decreasing in

the effective quality of the rival platforms in the economy. The elasticity of demand with

respect to platform k’s effective quality is higher when 𝜖 is higher.

Step 2: Firms’ Prices.—Given the demand in (5), firm j’s flow profit is

Ivi j∫
Ωit
vizp1−𝜎

zt dz
p−𝜎jt (p jt − 1). (7)

from selling to consumer i. Since the consumer’s value vi j for product j and consideration

set Ωit only appear in a term that scales demand by the same factor for any given price, they

are irrelevant to the firm’s pricing decision. Firm j’s optimal price is therefore

p jt =
𝜎

𝜎 − 1
. (8)
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Thus, it is optimal for firm j not to personalize prices.

Step 3: Platforms’ Ad Rates.— Given the demand in (6), platform k sets its ad rate to

maximize flow profit:

A = arg max
akt

𝜋𝕂takt
[𝜈 (akt)qkt]𝜖−1∫

𝕂
[𝜈 (azt)qzt]𝜖−1dz

= arg max
akt

akt𝜈 (akt)𝜖−1 (9)

where 𝜋𝕂t denotes the average ad price at time t. By assumption of Theorem 1, A is well-

defined. Thus, all platforms set a common ad rate A that is constant over time. The ad

rate depends on only the nuisance cost function 𝜈 and platform substitutability 𝜖 . When 𝜖

increases, A decreases since platforms compete more aggressively for attention, which is

more sensitive to ad rates, by reducing their ad rates.

Step 4: Size and Composition of Consideration Sets.—Given the ad rate A, the law of

motion (1), implies that the size Mt of consideration sets satisfies

Mt =
A
𝜆 f

−
(
A
𝜆 f

−M0

)
e−𝜆 f t . (10)

As t → ∞, Mt → M = A/𝜆 f , its steady state level. Intuitively, when the ad rate is

higher, consideration sets are larger, and when the forget rate is higher, consideration sets

are smaller. For (10) to be valid, Mt must be less than the total mass J of firms in the

economy at all t. This is so if A/𝜆 f < J , a necessary condition for equilibrium existence.

Given (10), using the law of motion (2) and accounting identity (3), in online Appendix

A I characterize the cdf H c
t of expected values outside Ωit via the equation18

∫ H c
t (v̂)

H c
0 (v̂)

1
JG (v̂) −MuN − ( J −M)u

du =
ln

[
M −M0 + ( J −M)e𝜆 f t

]
J −M . (11)

Given H c
t , I derive Ht , the cdf of expected values in Ωit from accounting identity (3).

Using (11), in online Appendix A I prove that H c
t and therefore Ht eventually converge

to their steady state levels H and H c. I also prove intuitive comparative statics in online

Appendix B. I show that the positive selection in ad auctions leads to a better matching in

Ωit relative to the population: H ⪰ G ⪰ H c all in first-order stochastic dominance. More-

over, when A increases, the total value Mt 𝜇Ht =
∫
Ωit
vi j d j in Ωit increases at all t (where

18Equation (11) applies at each point v̂ ∈ [0,∞) such thatH c
0 (v̂) is not already at its steady-state levelH c (v̂).

The steady state level H c (v̂) is such that the denominator of the integrand in (11) is zero when u = H c (v̂).
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here 𝜇Ht is the mean of the cdf Ht).19 Similarly, whenG increases in the mean-preserving

spread order so that data is more informative, the total valueMt 𝜇Ht in Ωit likewise increases

for all t sufficiently large.20 In Step 8, we will see that Mt 𝜇Ht is a sufficient statistic for the

product aggregate Cit which therefore increases in response to these changes.

Step 5: Firms’ Expected Flow Profits and Match Rates.—Given Mt , Ht , and H c
t , the

next step is to compute a firm’s expected flow profit from selling to consumer i and the

rate that it matches with the consumer (i.e. enters Ωit). These are necessary precursors

to solving a firm’s dynamic bidding problem. In particular, a firm’s match rate with the

consumer determines the value of the firm’s outside option to wait to bid in future auctions.

Using (7) and (8), firm j’s expected flow profit from selling to consumer i is

𝜋𝕁tv̂i j . (12)

where

𝜋𝕁t =
I

𝜎Mt 𝜇Ht
.

Thus, the expected flow profit is linear in the the firm’s expected value v̂i j to the consumer

and decreasing in the total value Mt 𝜇Ht of the rival firms in Ωit . As a result, dataG affects

flow profits and thus bidding and ad revenues which is important for comparative statics as

we will see in Section 5.

Next, I compute that the Poisson rate that firm j enters Ωit while outside Ωit is

𝜆 et (v̂i j) = 𝜆 atH c
t (v̂i j)N−1 (13)

where recall that 𝜆 at in (4) is the Poisson rate that firm j enters an auction for consumer i

and H c
t (v̂i j)N−1 is the probability that firm j wins an auction. Thus, when H c

t increases in

first-order stochastic dominance, match rates are lower since a firm faces stiffer competition

in the ad auctions. In online Appendix B I show that when ad rate A is lower, match rates

decrease since 𝜆 at decreases and H c
t increases in first-order stochastic dominance.

Step 6: Firms’ Bidding Strategies.—Given the expected flow profits and match rates, I

solve firm j’s bidding problem using Bellman’s principle of optimality. LetV In
t (v̂) denote

firm j’s continuation value from selling to consumer i at all points in the future if it is in Ωit

19The total expected value in Ωit coincides with the total value in Ωit in that
∫
Ωit
v̂i j d j =

∫
Ωit
vi j d j because

expectations are unbiased and errors are washed out in the aggregate.
20I suspect that this is true for all t but have not proven it.
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at time t and if v̂i j = v̂. LetV Out
t (v̂) be the continuation value if j is not in Ωit at time t. In

online Appendix A I prove that V In
t and V Out

t satisfy the Hamilton-Jacobi-Bellman (HJB)

equations
¤V In
t (v̂) = 𝜌V In

t (v̂) − 𝜆 f
[
V Out
t (v̂) −V In

t (v̂)
]
− 𝜋𝕁tv̂

¤V Out
t (v̂) = 𝜌V Out

t (v̂) − 𝜆 et (v̂)
(
V In
t (v̂) −V Out

t (v̂) − 𝔼
[
B (1)
t

��Bt (v̂) > B (1)
t

] )
.

Above, B (1)
t denotes the highest bid among the N − 1 other bidders in an auction which

determines the ad price in the event that firm j wins. That is, B (1)
t

d
= Bt (v̂ (1) ) where

v̂ (1) ∼
(
HC
t
)N−1.

Because the auction is second price, the optimal bid is the gain in continuation value

from winning the auction: Bt = V In
t −V Out

t . Using this fact, in online Appendix A I solve

the HJB equations to derive that

Bt (v̂) =
∫ v̂

0

∫ ∞

t
𝜋𝕁se−

∫ s
t [ 𝜌+𝜆 f +𝜆 ez (y) ] dz ds dy , v̂ ∈ [0,∞). (14)

From there, I compute that the expected ad price is

𝜋𝕂t =

∫ ∞

0

∫ ∞

t
𝜋𝕁se−

∫ s
t [ 𝜌+𝜆 f +𝜆 ez (v̂) ] dz ds [1 −Ot (v̂)] dv̂ (15)

where Ot = (H c
t )N + N (H c

t )N−1(1 − H c
t ) denotes the cdf of the second-highest expected

value among firms in the auction.

Intuitively, both the bid function Bt and expected ad price 𝜋𝕂t are increasing in the

coefficients {𝜋𝕁s , s ≥ t} on future flow profits. Also, Bt and 𝜋𝕂t are decreasing in future

match rates {𝜆 es , s ≥ t}. This is because when firms match with the consumer at higher

rates, the values of their outside options are higher so they bid less aggressively and the

average ad price is lower. In fact, a firm’s optimal bid depends on the match rates of all

firms with lower expected values: this is because when firms with lower expected values

reduce their bids, the values of the outside options for firms with higher expected values are

further raised causing them to further reduce their bids in response.

Though 𝜆 et is endogenous, if we treat it as given and send it to infinity at each point

in time pointwise, we see that the average ad price vanishes, consideration sets grow to

include almost all firms in the economy, and in the limit we obtain a classical frictionless

economy where there are, in effect, no platforms.

Step 7: Platforms’ Investment Rates.—Given the average ad price in (15) and con-
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sumers’ demand in (6), in online Appendix A I solve platform k’s problem using Pontrya-

gin’s Maximum Principle. There, I prove that when 𝜖 −1 < 1/𝜑, investment ℓkt and quality

qkt solve the ordinary differential equation (ODE) system

¤ℓkt =
𝜌 + 𝛿

1 − 𝜑
ℓkt −

𝜑

1 − 𝜑

𝜋𝕂tA(𝜖 − 1)
Kqkt

ℓ
𝜑

kt

¤qkt = ℓ
𝜑

kt − 𝛿qkt

(16)

with boundary conditions

lim
t→∞

ℓkt =
𝜑𝛿𝜋𝕂A(𝜖 − 1)
K ( 𝜌 + 𝛿)

qk0 = q0

where 𝜋𝕂 = limt→∞ 𝜋𝕂t denotes the steady state average ad price. Numerical solutions to

(16) are easily computed via the shooting method.

While the ODE for investment is not very intuitive, the long run steady state level of

investment limt→∞ ℓkt is intuitive. It is increasing in the steady state total ad revenue 𝜋𝕂A

and the elasticity of attention with respect to platform quality 𝜖 − 1. Together, these two

objects determine the marginal benefit of investing which is the ad revenue that can be

stolen from rival platforms by attracting more attention.

Step 8: Surpluses.—Given the equilibrium objects from previous steps, it is a matter of

accounting to show that

Total consumer surplus =
∫ ∞

0
e− 𝜌tu(Cit , Xit) dt (17)

where Cit = I (Mt 𝜇Ht )
1

𝜎−1

where Xit = K
1

𝜖−1 𝜈 (A)qt

Total firm surplus =
∫ ∞

0
e− 𝜌t (I − 𝜋𝕂tA) dt (18)

Total platform surplus =
∫ ∞

0
e− 𝜌t (𝜋𝕂tA −Kℓt) dt. (19)

Above, in the expression for the platform aggregate Xit , qt denotes the common quality

level of all platforms in equilibrium. Also, note that the product aggregate Cit depends on

only the total value Mt 𝜇Ht of the firms in the consideration set.
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5. Comparative Statics

Using the equilibrium characterization, we can now investigate the potential effects of

policies on the economy. In what follows, I analyze the effect of an interoperability policy

that raises the substitutability among platforms and a data policy that leads to a mean-

preserving spread of firms’ expectations of consumers’ values. Because of search frictions

and because investment is gradual, the economy’s transition dynamics in response to these

policies are potentially significant and lengthy. I illustrate the joint dynamics of outcomes

on each of the market sides with numerical examples. However, the comparative statics

across steady states hold more generally and I present analytical results in Table 1.

Because the model is highly stylized, the results in this section are intended to be peda-

gogical and not a definitive policy analysis. However, the economic channels that I identify

appear natural and are strongly indicative of the importance of a multisided analysis for

policy. I find that: (i) cross-side spillovers can be strong and reverse seemingly intuitive

comparative statics based on single-sided analyses; (ii) the effects of policies can flip over

time as shocks propagate across the market sides; (iii) policies typically must trade off

product consumption with platform consumption.

A Shock to Platform Substitutability.—At t = 0, the economy begins in steady state

for the parameters listed below Figure 1. At t = 1 there is an unanticipated shock to 𝜖

which increases by 1 percent from its initial level of 1.33. This shock may be the result

of a policy that mandates greater platform interoperability. For example, it may be that

platforms must now allow users to post links to other platforms on their websites or any

other technological change that makes it more convenient for users to shift attention across

platforms. Presumably, the logic behind the policy is that it will promote competition by

making it so that consumers have a meaningful choice as to how to spend their attention.21

Policies like these are often proposed (OECD, 2021). An example is the Digital Markets

Act, which seeks to make large platforms more interoperable, both with each other, and with

smaller platforms.22 As discussed in Section 3, a limitation is that I consider only platforms

that are strategically small. At the end of this section, I discuss in depth, why I expect

21“Interoperability is a key aspect of many digital platform services, as it gives users access to a wide range
of choices" (OECD, 2021). Interoperability policies are technological changes that alter platforms’ services.
Thus, one must take a stance on how consumers’ preferences for platforms change in response. In line with the
spirit of these policies, I model the change in terms of the substitutability parameter of the CES technology.

22There has also been discussion about whether interoperability mandates should apply more broadly,
regardless of a platform’s size (e.g., see the section on reciprocity at https://www.newamerica.org/oti/
briefs/how-to-make-the-access-act-a-success/ or page 38 of OECD (2021) or the first paragraph of
page 25 of https://crsreports.congress.gov/product/pdf/R/R47662/3).
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the qualitative patterns in Figure 1 to persist, at least for some parameters, when platforms

are atomic. However, one can also interpret platforms in the model as individual content

creators who are small though they operate on large platforms. Content creators invest in

their own content and often exercise some discretion over their ad rates.23
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Figure 1: Transition dynamics of a shock to 𝜖

Notes: I plot the transition between steady states following an an unanticipated increase in 𝜖 from 1.33 to
1.33(1.01) at t = 1 for parameters 𝜆 f = 1; K = .1; J = 1; 𝜌 = .1; 𝜎 = 3; N = 5;G = U[0, 1]; I = 1; 𝜑 = .5;
𝛿 = .5; 𝜈 (a) = (1 − .8395a.01)63.1472.

Figure 1 plots the economy’s transition dynamics for several outcomes of interest. As

seen in Panel (a), ad revenue initially spikes down. This is because the ad rate A drops

23Content creators on Twitch and YouTube often bargain over ad rates when signing con-
tracts (in the case of Twitch, see https://www.washingtonpost.com/video-games/2022/06/20/
twitch-ad-incentive-money-payout-55-percent/). An issue with this analogy is that one would expect
an interoperability policy to raise the substitutability of content relatively more between creators on different
platforms whereas the experiment raises substitutability among all creators by the same amount.
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(in this case from .2 to .1): platforms display ads at a lower rate because they can more

easily steal attention from each other after the shock. Despite the drop in A, ad revenue

eventually increases beyond its initial steady-state level for two reasons. First, consumers’

consideration sets decrease in size causing firms’ flow profits to increase. Second, the value

of a firm’s outside option when bidding decreases since there is greater delay in the time it

takes a firm to enter a consumer’s consideration set. For these reasons, firms bid more in

the ad auctions, causing the average ad price 𝜋𝕂t to increase to the extent that even though

A is lower, ad revenue 𝜋𝕂tA is higher in the long run.

As seen in Panel (b), investment follows a similar pattern (though it slightly overshoots

before declining to its steady-state level). Perhaps surprisingly, investment decreases in the

short run. However, after a not insignificant amount of time, platforms do indeed invest

more. If we were to ignore the effect of the shock on ad revenue, we would predict that the

new steady-state level of investment is 4 percent higher as opposed to the 10 percent higher

that it is in the example.

As seen in Panel (c), platform quality decreases in the short run before increasing past

its initial steady-state level. In the long run, since platform quality is higher and ads are

displayed at a lower rate, the platform aggregate Xit is also higher. However, as seen in

Panel (d), the product aggregate Cit decreases over time as consumers’ consideration sets

shrink because A is lower. The interoperability policy therefore must trade off product

consumption with platform consumption in the long run.

A Shock to Data.—At t = 0, the economy begins in steady state for the parameters listed

below Figure 3. At t = 1 there is an unanticipated shock to the cdfG which increases in the

mean-preserving spread order from U[.2, .8] to U[0, 1]. This shock may be the result of a

new policy that scales back on privacy laws, allowing platforms to collect more information

on consumers.24 As a result, firms’ expected values become more disperse as they Bayesian

update on the new information. Namely, a firm’s expectation v̂ ∼ U[.2, .8] of a consumer’s

value for its product is shocked to a new level ṽ ∼ U[0, 1].
The particular joint distribution of v̂ and ṽ is irrelevant for the new steady state. How-

ever, it is relevant for transition dynamics since it determines the cdf of expectations in

consideration sets right after the shock. As a result, I specify the joint distribution illus-

trated in Figure 2. Let v̂ be any point in the orange region [.2, .8]. Following the shock,

v̂ stays put in that ṽ = v̂ with probability .6. Otherwise, with the residual probability .4, it

jumps to one of the black regions [0, .2] ∪ [.8, 1]. Conditional on jumping up (down), ṽ is

24Examples of privacy laws include the General Data Protection Regulation and California Consumer Privacy
Act which apply to all websites on the Internet.
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distributed uniformly across the upper (lower) black region. The probability that v̂ jumps

10 .2 .8
v̂

U[.8, 1]U[0, .2]

.4Prv̂
.4 (1 − Prv̂)

Figure 2: Joint distribution of pre and post shock expected values

up Prv̂ is such that the martingale property holds: 𝔼[ṽ |v̂] = v̂.
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Figure 3: Transition dynamics of a shock toG

Notes: I plot the transition between steady states following an unanticipated change in G from U[.2, 8] to
U[0, 1] at t = 1 described in Figure 2. The other parameters are 𝜌 = .1; 𝜖 = 1.33; 𝜆 f = 1; P = .1; F = 1;
𝜎 = 3; N = 5; I = 1; 𝜑 = .5; 𝛿 = .5; 𝜈 (a) = 1 − 7.5a.

Figure 3 plots the economy’s transition dynamics for several outcomes of interest. As
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seen in Panel (a), ad revenue initially spikes up. This is because more informative data leads

to a better matching of firms and consumers and platforms are able to extract some of this

surplus gain in the ad auctions (despite the fact that information rents also increase). How-

ever, over time, ad revenue decreases and eventually settles at a lower steady-state level.

There are two forces that lead to this. First, each firm internalizes that it faces competition

from firms in consideration sets that are now on average more highly valued relative to

before the shock. Thus, any given firm’s flow profits from selling to any given consumer

are lower. Firms therefore bid less for ads. Second, more informative data leads firms to

match more quickly on average with consumers who value their products highly raising the

values of firms’ outside options further causing them to bid less for those consumers. These

two effects dominate, causing ad revenue to decrease in the long run. To see why these

effects must dominate, note that firms’ total flow revenue is fixed and equal to the income

I of consumers. Thus, over time, the gain in surplus to firms from better matches must be

competed away as consideration sets fill up with rival firms that are also better matches.

As seen in Panel (b), because the increase in ad revenue is short-lived, platform invest-

ment ℓkt after the shock is lower than before at each point in time. A failure to account for

the effects of data on the product market may lead policymakers to predict an increase in

ad revenue and thus greater platform investment in the long run, contrary to what happens

in this example. As seen in Panel (c), the decrease in investment leads platform quality

qt (and thus the platform aggregate Xit) to decrease at all times. However, the opposite is

true for the product aggregate Cit as seen in Panel (d) which increases as consumers match

with firms they value more highly on average. Thus, the data policy also leads to a tradeoff

between platform consumption and product consumption.

Analytical Results for Steady State.—The comparative statics across steady states in the

above examples hold more generally. Table 1 summarizes results proven for all parameters.

Table 1: Comparative Statics Across Steady States

C X 𝜋𝕂A ℓ

𝜖 ↑ ⇒ ↓ ↑ if K ≤ 1 ↑ ↑
G (v̂) = 1{v̂≥ 𝜇F } ⇒ minimal maximal maximal maximal

J ↑ ⇒ ↑ ↑ ↑ ↑
K ↑ ⇒ − ↑ − ↓

Notes: When G (v̂) = 1{v̂≥ 𝜇F } , data is uninformative because all mass is concentrated on the mean 𝜇F of the
prior F . The symbol ↑ denotes increase, ↓ denotes decrease, and − denotes no change.
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Formal statements and proofs are found in online Appendix B.

What if There Are A Finite Number of Platforms?—If there are a finite number of plat-

forms, then each one must account for the strategic effects of its actions on other platforms

as well as the effect of its ad rates on consideration sets and firms’ bids. I do not conduct

a formal analysis, but I expect these factors might mute certain effects but the qualitative

patterns in Figures 1 and 3 should persist (though perhaps for a different set of parameters).

For example, a positive shock to platform substitutability 𝜖 , would still incentivize each

platform to reduce its ad rates to steal business, though the effect might be lessened due

to the anticipated retaliation by rival platforms. On the other hand, it may be amplified as

now platforms recognize the positive effect of greater frictions in the product market on

their ad revenues in the long run. Under some assumptions on the nuisance cost function

𝜈 , the decline in ad rate should be large enough for ad revenue to decrease in the short

run. Similarly, the relationship between ad revenues and investment may be muted due

to strategic effects but should still be positive. Thus, the short-run patterns of the shock

will likely be qualitatively the same as in the numerical example for a range of parameters

(perhaps requiring a higher rate of quality depreciation 𝛿 or discounting 𝜌). The long-run

patterns should also continue to hold since the decline in ad rate eventually leads to an

increase in ad revenue regardless of whether platforms are large.

Similarly, I expect a positive shock to data informativeness to typically have the same

patterns as in the example. In the short run, what might change is that platforms may raise

their ad rates A to capitalize on the higher average ad price. This would mute the short-term

increase in the average ad price (which is decreasing in A as shown in online Appendix

B) but not reverse it. Thus ad revenue would rise in the short run as in the example. In

the long run, the ad rate would decline once the average ad price declines as consumers’

consideration sets fill up with more favorable firms. This would mute the decline in average

ad price, but clearly can not reverse it. Thus, in the long run, ad revenue will decline and so

too will investment though perhaps by not as much as in the absence of strategic effects.

6. Empirical Trends

“Perhaps the most puzzling feature...is that the rapid growth of digital adver-

tising has occurred over a period during which the share of U.S. economic

activity (as measured by GDP) represented by total advertising expenditures

has been in decline." (Silk et al., 2021)

In Section 5, I showed that giving all platforms access to more informative data may
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be harmful to them in that it reduces their ad revenues (and profits) in the long run. This

counterintuitive result relied on the impact of data on the product market. To offer sug-

gestive evidence in support of this channel, I show that by accounting for this channel, we

can qualitatively explain two empirical trends that many consider puzzling. In the process,

we will see that individual platforms do benefit from better data, even though platforms are

collectively made worse off if they all have access to better data.

Silk et al. (2021) document that

1. Ad revenue as a fraction of GDP in the United States has been relatively stable since

the 1920s but has experienced a slight decline in the past decade.

2. As a share of ad revenue, digital advertising has grown dramatically in the past decade

while traditional advertising has declined.

In light of the unprecedented use of data for ad targeting, one might have expected

entry of digital platforms to lead to a large increase in ad revenue. On the contrary, though

digital advertising has grown dramatically, total ad revenue as a fraction of GDP has been

in slight decline over the past decade. I now show that the model, when extended to include

traditional platforms, can qualitatively match both trends simultaneously.

Extension: Data Heterogeneity.—I extend the model to allow for two groups of plat-

forms that differ in their data. Group 1 platforms are data poor and represent traditional

media like newspapers or television. Group 2 platforms are data rich and represent online

platforms. The general formulation of this extension is found in online Appendix G (and

may interest readers seeking to explore the effects of policies that force platforms to share

data or more generally, analyze the relationship among data, platform quality, and platform

market share). Below, I describe only the setting for this section’s numerical illustration.

I assume that consumer i’s value for product j is log-normal: vi j = eZi j where Zi j ∼
N (0, 𝜎2

Z). There are two groups of platforms. For simplicity, the measure of group 1

platforms is equal to that of group 2 platforms. Firm j sees the signal 𝜁li j of consumer i’s

value vi j when bidding on a group l platform. I assume that

𝜁1i j = Zi j + Δu

and

𝜁2i j = Zi j + u

where 0 ≤ Δ ≤ 1 and u ∼ N (0, 𝜎2
u ) is independent of all other model primitives.25

25When platforms have heterogeneous data, it no longer suffices to specify only the cdfs of posterior ex-

25



Thus, group 1 platforms are data rich while group 2 platforms are data poor. All other

aspects of the model are as in the baseline. In equilibrium, there are now two bidding

functions, one for each platform group. Attention shares and average ad prices now also

differ across the two groups.

Numerical Illustration.—The figure below plots the steady state share of ad revenue

accruing to group 1 platforms as a function of group 1 platforms’ data advantage for the

parameters listed below the figure.
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Figure 4: Group 1 share of total ad revenue and total ad revenue

Notes: We plot the group 1 share of ad revenue and total ad revenue as a function of the informativeness of
group 1 platforms’ data (measured by 1 − Δ) for parameter values 𝜎2

Z = .5; 𝜎2
u = 2; I = 1; A = .01; 𝜆 f = 1;

F = .1;N = 20; 𝜌 = 1.6; 𝜎 = 3; 𝜑 = .75; 𝜈 (a) = 1−62.5a. The figure applies for any measureK of platforms.

The quantity on the x-axis is 1 − Δ. The left-most point when Δ = 1 can be thought of

as the case when both platform groups comprise only traditional media while any point

to the right can be thought of as arising after entry of digital platforms. Note that total

ad revenue and the shares of ad revenue of the respective groups are invariant to the total

measure of platforms in the economy. Thus, when comparing the point at Δ = 1 to any

other point, the comparison is consistent with any pattern of entry of data-rich and exit of

data-poor platforms as long as the new steady state comprises an equal share of them both.

Consistent with the first empirical trend, group 1 platforms have a higher share of the ad

revenue and this share is increasing in their data advantage. In this example, the higher

share of ad revenue results because group 1 platforms command both higher ad prices and

pectations. This is because a firm must conduct inference on its expected value to a consumer on the other
platform group when bidding in a given platform’s auction to assess the value of its outside option. To form
this expectation, the firm needs to know the joint distribution of the underlying signals.
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higher shares of attention. However, consistent with the second empirical trend, total ad

revenue decreases in the data advantage of group 1 platforms.

7. Welfare Analysis

This section analyzes welfare in a general equilibrium extension of the baseline model

of Section 2. I solve the problem of a social planner who sets the rates that platforms dis-

play ads and invest in their services to maximize welfare, taking into account the balance of

objectives on the different market sides. For tractability, the analysis focuses on the plan-

ner’s steady-state solution (defined below). I compare the planner’s steady-state solution to

equilibrium investment and ad rates in steady state to identify the sources of inefficiency.

I then show that a tax or subsidy on platforms’ ad revenues funded by or redistributed to

consumers can restore platforms’ steady-state investment to the efficient level. I also char-

acterize the efficient tax or subsidy.

Extension: General Equilibrium.—In the baseline model, firm and platform surplus are

expressed in different units from consumer surplus. To obtain a natural welfare measure, I

first extend to general equilibrium.

I endogenize the income I of consumers in the baseline model. Each consumer supplies

L units of labor inelastically at each point in time. Labor is the only productive resource

in the economy and is used by platforms for investment and by firms for production. The

wage is the numeraire in the economy and is set to 1. Thus, ℓkt now denotes the labor hired

by platform k for investment at time t. Also, assuming each unit of output requires a unit of

labor, the marginal cost of production is 1 just as in the baseline model. Let

ℓ jt =

∫
𝕀

ci jt1{ j∈Ωit } di

denote the total quantity of labor hired by firm j at time t. The labor market clears at t if

L =

∫
𝕂

ℓkt dk +
∫
𝕁

ℓ jt d j.

I assume that each consumer owns an equal share of all firms and platforms in the

economy. This implies that the relevant measure of social welfare is then consumer surplus.

The income of a consumer at t is

It =
∫
𝕁

p jtℓ jt d j
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which is the total revenue earned by firms. This is because platforms, who charge zero

prices, merely extract revenues from firms and all costs are labor costs. Note also that this

condition is implied by product market clearing at t.

Except for the changes above, I retain all other aspects of the baseline model. An equi-

librium for initial conditions M0, H0, and q0 is defined as before, except with the additions

of a process for income {It} and the condition that the labor market and product market

clear at all times.

In online Appendix C, I prove an analog of Theorem 4 characterizing the full general

equilibrium. Proposition 1 presents only equilibrium ad rates and investment rates in steady

state.

Proposition 1. Suppose that A is the unique solution of maxa 𝜈 (a)𝜖−1 . If A/𝜆 f < F and

𝜖 − 1 < 1/𝜑, then there exists a unique equilibrium. The equilibrium converges to a steady

state where

1. Each platform k displays ads at rate akt = A at each time t.

2. Each platform k invests at rate ℓkt = ℓ𝕂 where

ℓ𝕂 =
𝜑𝛿 𝜎

𝜎−1 𝜋̂𝕂A(𝜖 − 1)
𝜌 + 𝛿 + 𝜑𝛿 𝜎

𝜎−1 𝜋̂𝕂A(𝜖 − 1)
L
K

(20)

and 𝜋̂𝕂 = 𝜋𝕂/I denotes the average ad price price per unit of income and satisfies

equation (34) in online Appendix C.

Moreover, the sufficient conditions are almost necessary: if either A/𝜆 f ≥ J or 𝜖−1 > 1/𝜑,

then an equilibrium does not exist.

Planner’s Problem.—The planner sets platforms’ investment rates and ad rates to maxi-

mize welfare taking as given that consumers set their demands to maximize flow utility and

firms set prices and bid to maximize the NPV of their flow profits. I assume that the planner

is constrained to treat platforms symmetrically. I could also allow the planner to set firms’

prices but those will be efficient anyway since each firm will choose the same price and

thus produce the same amount. Further, the allocation of ad opportunities will be efficient

as well since the firms with the highest expected values win in each auction.26

Formally, the planner solves

max
{ℓ𝕂t } , {At }

∫ ∞

0
e− 𝜌tu(Ct , Xt) dt (21)

26This assumes that the planner is subject to the same data that platforms have.
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subject to

Ct = (L −Kℓ𝕂t) (Mt 𝜇Ht )
1

𝜎−1 ,

Xt = K
1

𝜌−1 𝜈 (At)q𝕂t ,
¤Mt = At − 𝜆 fMt ,

¤(MtHt) = At (H c
t )N − 𝜆 fHt ,

MtHt + ( J −Mt)H c
t = G ,

¤q𝕂t = ℓ
𝜑

𝕂t − 𝛿q𝕂t ,

given initial conditions M0, H0, and q0.

To obtain a sharp characterization of the planner’s solution, I assume that utility is

Cobb-Douglas for the rest of this section:

u(Ct , Xt) = C1−𝜏
t X𝜏

t (22)

where 0 < 𝜏 < 1 is the weight on platform consumption.

I also restrict attention to the steady-state solution of the planner’s problem defined by

a constant ad rate A∗, investment rate ℓ∗
𝕂

, and initial conditions M∗, H∗, q∗ such that the

planner solves (21) by setting At = A∗ and ℓ𝕂t = ℓ∗
𝕂

at each t and moreover, Mt = M∗ and

Ht = H∗ at each t.27

In online Appendix C, I prove the following Theorem 2, which characterizes investment

in the steady-state solution for an arbitrary discount rate 𝜌 and the ad rate in the steady-state

solution in the limit as 𝜌 → 0.28

Theorem 2. Let u be as in (22). Then, any steady-state solution to (21) has investment

ℓ∗𝕂 =
𝜑𝛿 𝜏

1−𝜏
𝜌 + 𝛿 + 𝜑𝛿 𝜏

1−𝜏

L
K
. (23)

Suppose that a steady-state solution to (21) exists for all 𝜌 in a neighborhood of zero. Let

A∗( 𝜌) denote the ad rate in the steady-state solution when the discount rate is 𝜌 whenever

27I conjecture that under some technical conditions, any solution to the planner’s problem eventually con-
verges to the steady state solution but have not investigated this formally.

28I expect that the solution for the ad rate for arbitrary 𝜌 can be obtained using a version of Pointryagin’s
Maximum Principle extended to an infinite-dimensional state space (since the planner must keep track of the
cdf Ht).
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the steady-state solution exists. Then

lim
𝜌→0

A∗( 𝜌) = arg max
a

[a𝜇H (a)]
1−𝜏
𝜎−1 𝜈 (a)𝜏 (24)

whenever the right-hand side is well-defined where 𝜇H (a) denotes the steady-state average

value of firms in consideration sets when all platforms display ads at constant rate a.

Corollary 2.1. If the planner can set platforms’ investment rates but not their ad rates, then

the unique steady-state solution for the planner’s choice of investment remains as in (23).

I now compare the planner’s choice of investment and ad rate to their equilibrium coun-

terparts, beginning first with investment.

Investment.—By comparing equilibrium investment (20) in steady state and the plan-

ner’s steady-state choice of investment (23) we can prove the following proposition.

Proposition 2. Holding 𝜏 fixed, the deviation ℓ𝕂 − ℓ∗
𝕂

between steady-state equilibrium

investment (20) and the planner’s steady-state solution for investment (23) is increasing in

𝜎

𝜎 − 1
𝜋̂𝕂A(𝜖 − 1) − 𝜏

1 − 𝜏
. (25)

When (25) is zero, equilibrium investment in steady state coincides with the planner’s

steady-state investment. When (25) is positive (negative), equilibrium investment in steady

state is too high (too low) relative to the planner’s steady-state investment. Each of these

outcomes is possible as seen by changing 𝜏 (since 𝜋̂𝕂 does not depend on 𝜏).

The statistic (25) gives a simple way of gauging the efficiency of equilibrium investment

in the model and depends on relatively few objects: (i) the markup 𝜎/(𝜎 − 1); (ii) the ad

revenue 𝜋̂𝕂A per unit of income; (iii) the elasticity 𝜖−1 of attention with respect to platform

quality; and (iv) the weight 𝜏 in utility on platform consumption.29

Each of these objects represents a source of inefficiency. The markup 𝜎/(𝜎 − 1) ap-

pears due to the monopoly power of product firms. This monopoly power leads them to

demand less labor for production resulting in more labor allocated to investment. The aver-

age ad revenue per unit of income 𝜋̂𝕂A is closely related to the business stealing incentives

of product firms. By entering the consideration set of a consumer, a firm steals business

from the rival firms in the set. If it can steal more, it will bid more aggressively in the ad

auction, leading 𝜋̂𝕂A to increase. These business-stealing incentives by firms also generate

29One potential method for estimating 𝜖 and 𝜏 jointly would be to run an experiment in which participants
are charged prices for using platforms.
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business-stealing incentives for platforms who invest solely to steal ad revenue from each

other. How much ad revenue platforms can steal from each other in turn depends on the

elasticity 𝜖 − 1 of attention with respect to platform quality.

As a result, equilibrium investment is determined by factors that are entirely distor-

tionary: monopoly power and business-stealing externalities. Neither of these are directly

related to the surplus generated for consumers through investment which is what determines

the planner’s investment incentives. This is why 𝜏/(1 − 𝜏) appears in (25). Platforms fail

to internalize the surplus that they generate for consumers with their investments because

they do not appropriate any of that surplus since platforms charge a price of zero.

These distortions can be corrected by simply placing a proportional tax/subsidy on plat-

forms’ ad revenues that is financed by/redistributed to consumers. The tax/subsidy is set so

that the ad revenue per income after adjusting for the tax/subsidy is such that (25) is zero.

Proposition 3. A proportional tax/subsidy on platforms’ ad revenues equal to

𝜏

1 − 𝜏

𝜎 − 1
𝜎

1
𝜋̂𝕂A(𝜖 − 1)

that is funded by/redistributed to consumers can restore steady-state equilibrium investment

to the efficient level ℓ∗
𝕂

defined in (23).

Another useful property of (25) is that it can be used to sign the effects of changes

to data and interoperability on the efficiency of investment. That is, using the results in

Table 1 (which can be shown to extend to the general equilibrium setting if ad revenue

𝜋𝕂A is replaced with ad revenue per unit of income 𝜋̂𝕂A), we see that an increase in 𝜖

increases 𝜋̂𝕂A, bringing investment closer to its efficient level if it is initially too low or

pushing it farther from its efficient level if it is initially too high. Typically, improving the

informativeness of data reduces 𝜋̂𝕂A leading to the opposite effects.

Ad Rate.—In equilibrium, the ad rate maximizes

a𝜈 (a)𝜖−1

whereas in the limit as 𝜌 → 0, the planner’s ad rate maximizes

[a𝜇H (a)] 1−𝜏
𝜎−1 𝜈 (a)𝜏 .

By inspection, the equilibrium ad rate can be either too high or too low depending on

parameters. For example, suppose that 𝜈 is continuous and 𝜈 (a) = 0 after some level
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a > 0.30 As 𝜖 tends to 1, the equilibrium ad rate converges to a whereas the planner’s ad

rate is unaffected. Thus, the ad rate can be higher in equilibrium than under the planner.

This is because platforms internalize the nuisance costs from ads only to the extent that the

nuisance costs affect how much attention platforms can steal from their rivals. Therefore,

when 𝜖 is small, platforms do not internalize nuisance costs enough. The key reason for

this is because platforms charge zero prices.

On the other hand, when 𝜏 tends to zero, the planner’s choice of ad rate converges to a

whereas the equilibrium ad rate is unaffected. Thus the ad rate can be lower in equilibrium

than under the planner. The intuition is that when 𝜏 is near zero, platform consumption is

not important for welfare, while product consumption is very important. Thus the planner

seeks to expose consumers to as many products as possible. However, in equilibrium, plat-

forms do not internalize the impact of exposing consumers to ads on product consumption.

Thus the ad rate can be lower in equilibrium than under the planner.

8. Summary of Extensions

I summarize five extensions of the baseline model of Section 2.31

Network Effects.—The first extension, found in online Appendix F, introduces network

effects. I assume that a consumer’s flow utility from platform use depends on how other

consumers allocate their attention. That is, the effective quality of platform k is modified

to 𝜂 (xkt)𝜈 (akt)qkt where 𝜂 is increasing in xkt =
∫
𝕀
xikt di. Analogous to (6) of the baseline

model, the equilibrium attention received by platform k is

xkt =
[𝜂 (xkt)𝜈 (akt)qkt]𝜖−1∫

𝕂
[𝜂 (xzt)𝜈 (azt)qzt]𝜖−1dz

.

Note that xkt appears on both sides above. To obtain explicit solutions for xkt we assume

𝜂 (x) = x𝜁 where 𝜁 > 0 controls the strength of the network effects.

For each subset Et ⊂ 𝕂 of positive measure, there is a solution that sets

xkt =
[𝜈 (akt)qkt]

𝜖−1
1−𝜁 (𝜖−1)∫

Et
[𝜈 (azt)qzt]

𝜖−1
1−𝜁 (𝜖−1) dz

30In the baseline model, I assumed 𝜈 > 0. This is just for ease of exposition for the technical reason that
demand (6) is not well-defined if almost all platforms set an ad rate a such that 𝜈 (a) = 0. A version of Theorem
1 still applies even if 𝜈 (a) vanishes at some point a > 0.

31Each of these extensions can also be analyzed in general equilibrium.
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if k ∈ Et and otherwise sets xkt = 0. Thus, network effects lead to equilibrium multiplicity.

Under the refinement that Et = 𝕂 at each t, there is a unique equilibrium, characterized

just as in the baseline model, except with a higher elasticity of platform demand equal to

(𝜖 − 1)/[1 − 𝜁 (𝜖 − 1)] > 𝜖 − 1. Thus, network effects lead platforms to display ads at a

lower rate and invest more in the long run. Under the refinement, 𝕂 represents the set of

platforms that remain active in the economy at each t with stable market shares.

Heterogeneous Platform Data.—The second extension, found in online Appendix G,

gives a more general formulation of the model discussed in Section 6. I provide an algo-

rithm to compute steady-state equilibrium for the model with two groups of platforms that

may differ in the informativeness of their data. This extension can be used to study policies

that mandate that platforms share their data or more generally, the relationship among data,

platforms’ market shares, and quality levels.

Heterogeneous Platform Productivity.—The third extension, found in online Appendix

H, allows platforms to be heterogeneous with respect to the productivities of their invest-

ments. I characterize full equilibrium dynamics using analogous methods to those of the

baseline model. This extension can be used to generate an essentially arbitrary non-atomic

distribution of platform size by varying the distribution of productivities, which improves

the model’s potential for a quantitative analysis.

Firm and Platform Entry.—The fourth extension, found in online Appendix I, intro-

duces firm and platform entry. To enter, a firm or platform must pay an up front cost. I

characterize the unique steady-state equilibrium and find that an increase in data informa-

tiveness often leads to entry of firms and exit of platforms while an increase in platform

substitutability leads to exit of both firms and platforms.

Reserve Prices.—The fifth extension, found in online Appendix J, introduces reserve

prices that are set optimally by platforms. I find that in candidate steady-state equilibria

reserve prices are generally positive. This is so even with a continuum of platforms be-

cause of search frictions in the ad market. In any steady-state equilibrium, ad revenues are

maximal when data is uninformative just as in the baseline model.

9. Conclusion

This paper has presented a general equilibrium model of the market for attention. The

model is among the first to endogenize outcomes on each of the market sides, including

the allocation in the product market, ad revenue, and the quality of platforms’ services.
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Because these outcomes are jointly determined and are relevant for welfare, such a model

is desirable. I show how these outcomes relate to each other, are determined in equilibrium,

and how they evolve together in response to changes to data and platform substitutability.

I apply the model to investigate the potential effects of interoperability and data poli-

cies. I show that (i) seemingly intuitive comparative statics based on single-sided analyses

can flip. For example, in the long run, allowing platforms to have access to more informa-

tive data may be harmful to them and in the short run, interoperability policies may appear

to reduce platform competition in that platforms invest less in their services. (ii) The short

run effects of policies may look very different from the long run effects as shocks gradu-

ally propagate across the market sides. Extrapolating short run trends to predict long run

outcomes may thus be misleading. In the short run, more informative data may appear to

benefit platforms and in the long run, interoperability policies do raise platforms’ invest-

ment rates. (iii) There are tradeoffs across the market sides: platform consumption is often

traded off with product consumption. To assess whether a policy is on the whole beneficial

or harmful, both types of consumption should be taken into account. The welfare analysis

in this paper provides some sense of the economic conditions when we may expect policies

to bring the economy closer to first best.

The model is stylized and abstracts from some potentially important effects. Because

I model monopolistically competitive platforms, the analysis may omit forces that are rel-

evant for platforms that are a large relative to the sector, who may consider the strategic

effects of their actions on other platforms or on the sizes of consumers’ consideration sets

and firms’ continuation values.32 However, this does not mean, that the platforms in the

model do not have market power. Each platform is a monopolist in its category of service

and when substitutability is low, effectively holds its share of consumer attention captive.

Further, platforms also have market power in the ad market due to search frictions and com-

pete only via the outside options of firms to match with consumers through other platforms.

The model also abstracts from the potential effects of personalized pricing. Because

32In 2023, Meta (Facebook and Instagram) earned close to 23 percent of global digital ad
revenue which was 602 billion according to https://www.statista.com/statistics/237974/
online-advertising-spending-worldwide/. YouTube earned 5.5 percent. X, TikTok, Snapchat, Pin-
terest, Twitch, and Spotify and many others each earned far less. Even if we remove search-engine advertising
(which perhaps fits my model assumptions somewhat less well) from consideration, the numbers remain qual-
itatively the same. Specifically, according to https://www.oberlo.com/statistics/google-ad-revenue,
Google’s search-engine ad revenue was 175 billion in 2023. Since Google search has 92 percent of the global
search market, an estimate of global search-engine ad revenue in 2023 is 190 billion. Thus global digital ad
revenue excluding search-engine ad revenue was roughly 412 billion in 2023. Of this, Meta (Facebook and
Instagram) earned close to 33 percent. YouTube earned 7.7 percent. X, TikTok, Snapchat, Pinterest, Twitch,
and Spotify and many others earned far less.
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I assume CES preferences for products, it is optimal for the firms in the model to charge

a fixed markup and not to personalize prices. This greatly simplifies the analysis but is a

special property of CES preferences. For an analysis of the effects of personalized pricing,

see Rhodes & Zhou (2022) and the literature discussed there.

Because I have abstracted from these and other potentially important effects, the policy

analysis in this paper is only suggestive. The primary purpose of the analysis is to shed light

on some economic channels resulting from interactions among the market sides that can

potentially be strong and lead to counterintuitive effects. We can not analyze these channels

in other models, which generally treat one or more sides of the market as exogenous. Yet,

these channels appear natural and worthy of serious consideration by policymakers. Future

work may seek to incorporate additional effects into this paper’s setup in order to make

progress toward a serious quantitative exploration of policies.
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Online Appendix

A. Proofs for Section 4

This appendix completes the proof of Theorem 1. I start with some useful lemmas.

Lemma 1. In any equilibrium, platforms invest at the same rates if 𝜖 − 1 < 1/𝜑. An

equilibrium does not exist if 𝜖 − 1 > 1/𝜑.

Proof. Solving out the ODE for qt yields

qkt = e
−𝛿t

∫ t

0
e𝛿sℓ𝜑ks ds + e

−𝛿tq0.

The flow utility of platform k is then

𝜋𝕂t

(
e−𝛿t

∫ t
0 e

𝛿sℓ
𝜑

ks ds + e
−𝛿tq0

)𝜖−1∫
𝕂
q𝜖−1
zt dz

− ℓkt .

Suppose that 𝜖 − 1 < 1/𝜑. Then we observe that the flow utility must be concave in {ℓkt}.
The second term is linear. The first term’s concavity is determined by the numerator, which

is a CES aggregator with share weights determined by the exponential function. It is well

known that this aggregator is strictly concave as long as 𝜖 − 1 < 1/𝜑.
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Since the flow utility is concave in {ℓkt} at each t, the objective function must also be

concave in {ℓkt}. As a result, any solution to platform k’s problem must be unique. Thus,

all platforms must follow the same strategy in an equilibrium.

Now suppose that 𝜖 − 1 > 1/𝜑. I claim that there can not exist an equilibrium. Fix an

arbitrary strategy {ℓkt} and then consider scaling up by some factor 𝜒 . For large 𝜒 , flow

utility is determined primarily by the term

𝜒 𝜑 (𝜖−1)𝜋𝕂t

(
e−𝛿t

∫ t
0 e

𝛿sℓ
𝜑

ks ds
)𝜖−1∫

𝕂
q𝜖−1
zt dz

− 𝜒ℓkt .

Thus if 𝜑(𝜖 − 1) > 1, it is possible for the platform to acheive an arbitrarily high value for

the objective simply be scaling up 𝜒 .

Lemma 2. There exists a unique solution to the ODE system

¤ℓkt =
𝜌 + 𝛿

1 − 𝜑
ℓkt −

𝜑

1 − 𝜑

𝜋𝕂tA(𝜖 − 1)
Kqkt

ℓ
𝜑

kt (26)

¤qkt = ℓ
𝜑

kt − 𝛿qkt

for the whole domain t ∈ [0,∞) for any positive initial conditions (ℓk0 , qk0). Moreover, the

solution for investment {ℓkt} is increasing and continuous in its initial condition ℓk0.

Proof. Since the system can be written in standard form as [ ¤ℓkt ¤qkt] = f (t , [ℓkt qkt]) where

f is continuous and locally Lipschitz in [ℓkt qkt] the existence and uniqueness of local so-

lutions follows from Picard-Lindelof. These properties also imply that solutions will be

continuous in initial conditions. Observe that the ODE for ℓkt has an absorbing point at 0

and by Gronwall’s inequality

ℓkt ≤ e
𝜌+𝛿
1−𝜑 t

whenever it exists. Similarly from the ODE for qkt we have

qkt = e
−𝛿tq0 +

∫ t

0
e−𝛿 (t−s)ℓ𝜑ks ds ≤ e

−𝛿tq0 +
∫ t

0
e−𝛿 (t−s) e𝜑

𝜌+𝛿
1−𝜑 t ds.

But then the solution of the ODE system can not explode in finite time or become negative

and so the maximal domain of existence must be all of t ∈ [0,∞).
To see that {ℓkt} is monotone in ℓk0 divide both sides of the ODE for ℓkt by ℓkt . Then

we have
¤ℓkt
ℓkt

=
𝜌 + 𝛿

1 − 𝜑
− 𝜑

1 − 𝜑
ℓ
𝜑−1
kt

𝜋𝕂tA(𝜖 − 1)
Kqkt

.
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Let ft = ln(ℓkt). Then

¤ft =
𝜌 + 𝛿

1 − 𝜑
− 𝜑

1 − 𝜑
(e ft )𝜑−1 𝜋𝕂tA(𝜖 − 1)

Kqkt

with
¤qkt = e𝜑 ft − 𝛿qkt .

Now I make the observation that ¤f is increasing in both ft and qkt with the former being

true since 𝜑 < 1. Moreover, any solution for qkt is monotone in { fs , s ≤ t}. Let f10

and f20 be two initial conditions for ft . Suppose f10 > f20. Let { f1t} and { f2t} be the

corresponding solutions. By my initial observiation, it is easy to see that ¤f1t > ¤f2t for all t

and so f1t − f2t > f10 − f20 for all t.

Lemma 3. Any solution of the ODE system (26) for investment ℓkt for any initial conditions

either diverges, vanishes, or converges to steady state.

Proof. In what follows, let (ℓSS , qSS) denote the unique steady state of the ODE system

(26). If qkt → qSS then it must be that ℓkt → ℓSS . To see why, fix 𝛼 > 0. There exists 𝜁 > 0
sufficiently small such that

𝜌 + 𝛿

1 − 𝜑
− 𝜑

1 − 𝜑

(𝜋𝕂 + 𝜁 ) A(𝜖 − 1)
K (qSS − 𝜁 ) (ℓSS + 𝛼)𝜑−1 > 0. (27)

Note that if 𝛼 and 𝜁 were 0, the above would be 0 since (ℓSS , qSS) are by definition steady

state. Since 𝜋𝕂t → 𝜋𝕂 and qkt → qSS , for all t sufficiently large, we have

¤ℓkt
ℓkt

=
𝜌 + 𝛿

1 − 𝜑
− 𝜑

1 − 𝜑

𝜋𝕂tA(𝜖 − 1)
Kqkt

ℓ
𝜑−1
kt

>
𝜌 + 𝛿

1 − 𝜑
− 𝜑

1 − 𝜑

(𝜋𝕂t + 𝜁 ) A(𝜖 − 1)
K (qSS − 𝜁 ) ℓ

𝜑−1
kt .

Then if ever ℓkt > ℓSS + 𝛼 for some t sufficiently large, then ¤ℓks/ℓks will be bounded below

by (27) for all s ≥ t and thus ℓks must diverge. But then clearly, qkt → qSS can not hold. We

can follow an analogous argument to show that if ever ℓkt < ℓSS − 𝛼 for some t sufficiently

large then ℓkt must eventually vanish and so qkt → qSS also can not hold. Since 𝛼 > 0 was

arbitrary it follows that ℓkt → ℓSS .

Thus, going forward we suppose that qkt ↛ qSS . Then there exists 𝛼 > 0 such that for

anyT , there exists t > T such that |qkt − qSS | > 𝛼.
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Suppose that qkt ≥ qSS + 𝛼 for some t sufficiently large so that |𝜋𝕂t − 𝜋𝕂 | < 𝜁 . We may

without loss assume that ℓkt ≥ ℓSS because after a long enough time, there must be t such

that ℓkt ≥ ℓSS if qkt ≥ qSS + 𝛼 since otherwise qkt could not have been reached. Therefore
¤ℓks > 0 for all s ≥ t and in fact if 𝜁 was chosen sufficiently small,

¤ℓks
ℓks

>
𝜌 + 𝛿

1 − 𝜑
− 𝜑

1 − 𝜑

(𝜋𝕂t + 𝜁 )A(𝜖 − 1)
K (qSS + 𝛼) ℓ

𝜑−1
SS > 0.

Thus ℓks must diverge as s → ∞.

Analogous logic shows that if we are in the other case when ℓkt ≤ ℓSS and qkt ≤ qSS −𝛼

for some t sufficiently large then ℓkt → 0.

Lemma 4. There exists a unique solution to the boundary-value problem in Part 7 of The-

orem 1.

Proof. I first argue that there can be at most one solution to the boundary value problem.

Suppose for contradiction that there are two solutions ℓkt and ℓ̂kt which respectively have

initial conditions ℓk0 and ℓ̂k0 and suppose that ℓ̂k0 > ℓk0. In the last part of the proof of

Lemma 2 we showed that

ln(ℓ̂kt) − ln(ℓkt) ≥ ln(ℓ̂k0) − ln(ℓk0)

for all t. But then it can not be the case that both satisfy the boundary condition.

I now prove existence of a solution to the boundary value problem. To do this, consider a

version of the problem where the boundary at ∞ is instead a boundary at some finiteT > 0.

If a solution exists to this boundary problem with boundary atT then it will be unique by an

analogous argument to the one we just gave for boundary at ∞. It is easy to see from (26)

that by increasing ℓk0 we can get ℓkT as high as we would like and by decreasing ℓk0 we can

get ℓkT as close to 0 as we would like. Thus, by continuity (established in Lemma 2), there

must be some initial condition for which ℓkT = ℓSS which I denote by ℓk0(T ). The solution

to the initial value problem with this initial condition is the solution to the boundary value

problem with boundary atT .

Now consider a sequence of times (Tn) such that limn→∞Tn = ∞. Consider the corre-

sponding sequence of solutions of the boundary value problem with each solution extended

out to infinity. By Lemma 3 we can categorize these solutions based on their tail behavior.

Namely, there must be an infinite number of solutions that diverge or an infinite number

that vanish. Suppose that the former is true. Consider ℓ∗k0 defined as the infimum of the

set of initial conditions of the diverging solutions. Let the solution for investment with
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this initial condition be denoted by ℓ∗kt . We will argue that ℓ∗kt solves the boundary value

problem. Suppose for contradiction that ℓ∗kt diverges and let T ∗ denote the last time that

ℓ∗kt = ℓSS . Then ℓ∗kt is the solution to the boundary value problem with boundary at T ∗.

Next considerTn > T ∗ where n is such that the corresponding solution to boundary value

problem with boundary at Tn diverges. Then it must be that ℓk0(Tn) < ℓ∗k0 since solutions

are monotone in initial conditions and this solution hits at a later time thanT ∗. But then we

have a contradiction of the definition of ℓ∗k0.

Now suppose that ℓ∗kt eventually converges to 0. By inspecting (26) I see that there

exists ℓ > 0 and q > 0 such that if at any point in time ℓkt < ℓ and qkt < q then the ℓkt must

converge to 0. LetT ∗ now be defined as the first time that ℓ∗kt < ℓ − 𝛼 and q∗kt < q − 𝛼 for

𝛼 > 0. But then if we perturb ℓ∗k0 up by an arbitrarily small amount, the solution for this

perturbed initial condition at T ∗ must be such that ℓkT ∗ and qkT ∗ must move up by at least

𝛼. This is so since the solutions must diverge by the definition of ℓ∗k0. This contradicts the

continuity of the solutions of the initial value problem in the initial condition established in

Lemma 2.

The case when there are an infinite number of solutions that converge to 0 is analogous.

Since there must be either an infinite number of solutions that diverge or converge to 0, the

proof is complete.

Proof of Theorem 1. I start by taking equilibrium existence as given in which case Parts 1-3

of the theorem follow from standard arguments.

To complete the proof of Part 4, one can directly verify that (10) solves the ODE (1)

whenever A/𝜆 f < J . To derive (11), I conjecture and later verify (in the proof of Part 6

below) that bidding strategies are necessarily monotone so that (2) applies:

¤(MtHt) = A(H c
t )N − 𝜆 fMtHt .

Using the accounting identity MtHt + ( J −Mt)H c
t = JG, we have

( J −Mt) ¤H c
t = 𝜆 f [ JG − ( J −Mt)H c

t ] − A(H c
t )N + (A − 𝜆 fMt)H c

t

= 𝜆 f [ JG −M (H c
t )N − ( J −M)H c

t ].

The steady state H c is such that the right-hand side above is zero. Since M on the right-

hand side is the steady state level and is just a constant, the ODE is separable and we can

solve it analytically for H c
t . I find that at each point v̂ ∈ [0,∞) where H c

0 (v̂) is not already
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at its steady state level H c (v̂), H c
t (v̂) satisfies (11). By inspecting (11), we see that H c

t and

therefore Ht must eventually converge to their steady state levels H c and H .

Part 5 follows straightforwardly from Parts 1 and 2.

To prove Part 6, letV In
t (v̂) denote firm j’s continuation value from selling to consumer

i at all points in the future if it is in Ωit at time t when v̂i j = v̂. Let V Out
t (v̂) be defined

analogously. V In
t andV Out

t must satisfy the Hamilton-Jacobi Bellman equations

¤V In
t (v̂) = 𝜌V In

t (v̂) − 𝜆 f
[
V Out
t (v̂) −V In

t (v̂)
]
− 𝜋𝕁tv̂

and

¤V Out
t (v̂) = 𝜌V Out

t (v̂) − 𝜆 atWt (v̂)
(
V In
t (v̂) −V Out

t (v̂) − 𝔼
[
B (1)
t

��Bt (v̂) > B (1)
t

] )
.

Above,Wt (v̂) denotes the probability that firm j wins an auction at time t for consumer i

conditional on v̂i j = v̂ and B (1)
t is distributed according to the maximum of the N − 1 other

bids in an auction at time t. If Bt is increasing thenWt = (H c
t )N−1 and B (1)

t ∼ Bt (v̂ (1) )
where v̂ (1) ∼Wt .

In any equilibrium, because the auction is second price, Bt = V In
t −V Out

t . Thus, sub-

tracting the two equations yields

¤Bt (v̂) = [𝜌 + 𝜆 atWt (v̂) + 𝜆 f ]Bt (v̂) − 𝜆 at

∫ Bt (v̂)

0
s dW̃t (s) − 𝜋𝕁tv̂

where W̃t denotes the cdf of B (1)
t . By definition,Wt (v̂) = W̃t (Bt (v̂)).

Differentiating both sides with respect to v̂ gives

¤B′
t (v̂) =

[
𝜌 + 𝜆 atWt (v̂) + 𝜆 f

]
B′
t (v̂) − 𝜋𝕁t .

The solution to this ODE is

B′
t (v̂) = e

∫ t
0 [ 𝜌+𝜆 f +𝜆 azWs (v̂)] ds

(
B′

0(v̂) −
∫ t

0
𝜋𝕁se−

∫ s
0 [ 𝜌+𝜆 f +𝜆 azWz (v̂)] dz ds

)
.

One can show thatV In
t andV Out

t must be Lipschitz and thus, since B′
t can never diverge in

an equilibrium, the term in parenthesis must vanish as t → ∞. We therefore have

B′
t (v̂) = e

∫ t
0 [ 𝜌+𝜆 f +𝜆 azWs (v̂)] ds

∫ ∞

t
𝜋𝕁se−

∫ s
0 [ 𝜌+𝜆 f +𝜆 azWz (v̂)] dz ds
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and so the bidding function is increasing as conjectured.

To prove Part 7, given the average ad prices and demand from (6), the Hamiltonian for

platform k’s problem is

H(t , qkt , ℓkt , 𝜆 t) = 𝜋𝕂tA
q𝜖−1
kt∫

𝕂
q𝜖−1
lt dl

− ℓkt + 𝜆 t

(
ℓ
𝜑

kt − 𝛿qkt
)

where the costate variable 𝜆 t solves

𝜌𝜆 t − ¤𝜆 t = 𝜋𝕂tA(𝜖 − 1)
q𝜖−2
kt∫

𝕂
q𝜖−1
lt dl

− 𝜆 t𝛿.

By Lemma 1, all equilibria are neccessarily symmetric when 𝜖 < 2. Thus, along an

equilibrium trajectory,

𝜌𝜆 t − ¤𝜆 t =
𝜋𝕂tA(𝜖 − 1)

Kqkt
− 𝜆 t𝛿.

The first-order condition for maximizing the Hamiltonian yields

𝜆 t =
1
𝜑
ℓ

1−𝜑
kt .

Differentiating both sides with respect to time yields

¤𝜆 t =
1 − 𝜑

𝜑
ℓ
−𝜑
kt

¤ℓkt .

Then, from the costate equation we arrive at

¤ℓkt =
𝜌 + 𝛿

1 − 𝜑
ℓkt −

𝜑

1 − 𝜑

𝜋𝕂tA(𝜖 − 1)
Kqkt

ℓ
𝜑

kt

where recall that
¤qkt = ℓ

𝜑

kt − 𝛿qkt

starting from qk0 = q0.

By Lemmas 2 and 3 the unique solution of this ODE system that is consistent with an

equilibrium must solve (16). Note that when 𝜖 < 2, the Hamiltonian is jointly concave in

state and control and thus the Mangasarian sufficient conditions are satisfied implying that

each platform k optimizes by investing according to {ℓkt} that solves (16) provided its rivals

do the same. By Lemma 4, a unique solution to (16) exists and thus there exists a unique

equilibrium that converges to steady state.
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In the more general case when 𝜖 − 1 < 1/𝜑 the Hamiltonian is no longer necessarily

jointly concave in the state and control. To verify that each platform k is optimizing I use a

brute force application of the calculus of variations. I first show that if investment satisfies

(16), then the Gateaux derivative of platform k’s objective with respect to the control is zero

in all directions. I then show that the second order condition is satisfied in all directions

which is straightforward since platform k’s objective is concave in the control as seen from

the proof of Lemma 1. I omit the details of these steps for brevity.

B. Proofs for Section 5 and Additional Comparative Statics

Since I prove many comparative statics for steady state only, it is useful to first write

down the steady state equilibrium properties in Lemma 5.

Lemma 5. Suppose that 𝜖 − 1 < 1/𝜑 and that A is the unique solution of maxa a𝜈 (a)𝜖−1.

In a steady state equilibrium, the following hold:

1. The measure of varieties M in a consideration set is A/𝜆 f .

2. The cdf H c of the expected values of a consumer for the firms outside of her consid-

eration set solves

M (H c)N + ( J −M)H c = JG . (28)

3. The cdf H of the expected values of a consumer for the firms in her consideration set

satisfies H = (H c)N .

4. Each firm sets price p = 𝜎/(𝜎 − 1).

5. Firm j’s flow profit from selling to consumer i is 𝜋𝕁v̂i j where

𝜋𝕁 =
I

𝜎M 𝜇H
.

6. Firm j bids

B(v̂i j) = 𝜋𝕁

∫ v̂i j

0

1
𝜌 + 𝜆 f + 𝜆 e (s)

ds (29)

in an auction for consumer i where 𝜆 e = 𝜆 a (H c)N−1.

7. The Poisson rate that firm j ∈ Ωcit enters Ωit is 𝜆 e (v̂i j).
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8. The average ad price is

𝜋𝕂 = 𝜋𝕁

∫ ∞

0

1 − NH c (s)N−1 + (N − 1)H c (s)N
𝜌 + 𝜆 f + 𝜆 e (s)

ds. (30)

9. Each platform invests at rate

ℓ𝕂 =
𝜑𝛿𝜋𝕂A(𝜖 − 1)
K ( 𝜌 + 𝛿) . (31)

Proof. Lemma 5 follows almost immediately from the derivation in Section 4. The condi-

tion 𝜖 − 1 < 1/𝜑 is almost a necessary condition as seen in Lemma 1. I only use it here

because it guarantees that each platform employs the same investment strategy.

I will now prove a several comparative statics, including those in Table 1.

Lemma 6. An increase in G in the mean-preserving spread order leads to an increase in

the steady state cumulative value M 𝜇H and product consumption C and a decrease in the

cdf H c in second-order stochastic dominance.

Proof. Suppose thatG increases in the mean-preserving spread order to Ĝ. Let Ĥ c denote

the steady state cdf under Ĝ. Define 𝛾 : [0,∞) → [−1, 1] and 𝜈 : [0,∞) → [−1, 1] such

that

Ĝ (y) = G (y) + 𝛾 (y) and Ĥ c (y) = H c (y) + 𝜈 (y)

for all y ∈ [0,∞). Then by Part 2 of Lemma 5, it follows that

J [G (y) + 𝛾 (y)] = M [H c (y) + 𝜈 (y)]N + ( J −M) [H c (y) + 𝜈 (y)]

and

JG (y) = MH c (y)N + ( J −M)H c (y).

Substracting the bottom equation from the top equation gives

𝛾 (y) = 𝜈 (y)
(
J −M
J

+ M
J
[H c (y) + 𝜈 (y)]N−1

)
.

Integrating both sides from 0 to s ∈ [0,∞) we derive∫ s

0
𝜈 (y) dy

[
J −M
J

+ M
J
Ĥ c (s)N−1

]
− M
J

∫ s

0

∫ y

0
𝜈 (l) dy dĤ c (y)N−1 ≥ 0. (32)
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Above, I have used integration by parts and the fact that Ĝ is a mean-preserving spread

of G implies that
∫ s
0 𝛾 (y) dy ≥ 0 for each s ∈ [0,∞). I now argue that

∫ s
0 𝜈 (y) dy ≥ 0

for all s ∈ [0,∞) with strict inequality at some point s ∈ [0,∞). This implies both that

H c dominates Ĥ c in second-order stochastic dominance and so 𝜇Ĥ > 𝜇H . Suppose for

contradiction that there exists a point s ∈ [0,∞) such that
∫ s
0 𝜈 (y) dy < 0. Let

l∗ = inf
{
l |

∫ l

0
𝜈 (y) dy < 0, l > 0

}
.

If l∗ > 0, then (32) is violated at l∗ which is a contradiction. Then it must be that l∗ = 0.

But by inspecting (32), we see that
∫ s
0 𝜈 (y) dy must be increasing in s when it fist departs

from 0 as otherwise (32) is violated for s close to the point of departure. Thus l∗ ≠ 0, a

contradiction. It follows that
∫ s
0 𝜈 (y) dy ≤ 0 for each s ∈ [0,∞). Strict inequality must

occur at a some point since Ĝ is a mean-preserving spread ofG.

In the baseline model I assumed thatG is nonatomic. This was simply to avoid ties in the

auctions. I will show that steady-state ad revenue is maximal when data is uninformative

in a limiting sense formalized below in Lemma 7. To do this, let us make explicit the

dependency of the equilibirum ad price in steady state on the cdfG by denoting it by 𝜋𝕂 (G).

Lemma 7. Let {Gn} be a sequence of continuous cdfs converging pointwise to the Heav-

iside function centered at 𝜇F . That is limn→∞Gn (v̂) = 1v̂≥ 𝜇F for each v̂ ∈ [0,∞). Then

limn→∞ 𝜋𝕂 (Gn) = supG 𝜋𝕂 (G) where the supremum is over all continuous cdfs G sup-

ported on [0,∞).

Proof. LetG be arbitrary. We have

𝜋𝕂 (G) = 𝔼[B(v̂ (2) )]

= 𝔼

[
𝜋𝕁

∫ v̂ (2)

0

1
𝜌 + 𝜆 f + 𝜆 e (s)

ds

]
≤ I𝔼[v̂ (2) ]

𝜎M 𝜇H

≤ I𝔼[v̂ (1) ]
𝜎M 𝜇H

=
I

𝜎M ( 𝜌 + 𝜆 f )
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where above v̂ (2) ∼ (H c)N + N (H c) (N−1) (1 −H c) and v̂ (1) ∼ (H c)N . In the fourth line

we use the fact that in steady stateH = (H c)N . The notation has supressed the dependency

of H c and H onG (as seen from the equation (28)).

Using (30) in Lemma 5 we have

lim
n→∞

𝜋𝕂 (Gn) = lim
n→∞

I

𝜎M
∫ ∞
0 [1 −H (s,Gn)] ds

×
∫ ∞

0

1 − NH c (s,Gn)N−1 + (N − 1)H c (s,Gn)N

𝜌 + 𝜆 f + 𝜆 aH c (s,Gn)N
ds

=
I

𝜎M 𝜇F

∫ ∞

0

1 − N1s≥ 𝜇F + (N − 1)1s≥ 𝜇F

𝜌 + 𝜆 f + 𝜆 a1s≥ 𝜇F

ds

=
I

𝜎M 𝜇F

∫ 𝜇F

0

1
𝜌 + 𝜆 f

ds

=
I

𝜎M ( 𝜌 + 𝜆 f )

where in the second equality I have used the dominated convergence theorem to pass the

limit through the integral. Above I have made explicit the dependency of H c on Gn in the

notation.

Though the ad rate A is endogenous, it is useful to derive comparative statics in which

we treat it as exogenous and vary it directly, holding all other parameters in the model fixed

as we do below in Lemmas 8 and 9.

Lemma 8. An increase in A leads to a decrease in Ht and H c
t in first-order stochastic

dominance and an increase in Mt 𝜇Ht and Cit at all t.

Proof. Recall that in Step 4 of Section 4 we saw that

¤H c
t = 𝜆 f

[ JG −M (H c
t )N − ( J −M)H c

t ]
J −Mt

= 𝜆 f
J

[
G −H c

t
]
+M

[
H c
t − (H c

t )N
]

J −Mt
.

When A goes up, both M and Mt increase as seen from (10) and so ¤H c
t is higher holding

fixed the value of H c
t at time t. Using standard comparison arguments for differential equa-

tions, it is easy to see that this implies H c
t must increase pointwise when A increases. That

is, H c
t decreases in the sense of first-order stochastic dominance. This in turn implies that
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Mt 𝜇Ht = K 𝜇G − ( J −Mt) 𝜇H c
t

must increase. By Part 8 of Theorem 1, Cit = I (Mt 𝜇Ht )
1

𝜎−1

so it also must increase.

To show that Ht decreases in first-order stochastic dominance recall that

¤(MtHt) = A(H c
t )N − 𝜆 fMtHt

⇒ (A − 𝜆 fMt)Ht + ¤HtMt = A(H c
t )N − 𝜆 fMtHt

⇒ ¤Ht =
A
Mt

[(H c
t )N −Ht]

⇒ ¤Ht =
A

A
𝜆 f

−
(
A
𝜆 f

−M0

)
e−𝜆 f t

[(H c
t )N −Ht].

In the last line, we see that an increase in A leads to an increase in ¤Ht holding fixed the

value of Ht . Again, using standard comparison arguments for differential equations, it is

easy to see that this implies H c
t must increase pointwise when A increases.

Lemma 9. An increase in A leads to an decrease in steady state ad revenue 𝜋𝕂A.

Proof. We have from Lemma 5

𝜋𝕂A =
𝜆 f

𝜎
∫ ∞
0 1 −H c (s)N ds

∫ ∞

0

1 − NH c (s)N−1 + (N − 1)H c (s)N
𝜌 + 𝜆 f + 𝜆 e (s)

ds

where 𝜆 e (s) = 𝜆 aH c (s)N−1 for each s ∈ [0,∞). By Lemma 8, an increase in A leads to a

decrease in H c in first-order stochastic dominance. Since 𝜆 e increases pointwise, to show

that 𝜋𝕂A decreases as A increases, it suffices to observe that

1 − NH c (s)N−1 + (N − 1)H c (s)N

1 −H c (s)N
= N

1 −H c (s)N−1

1 −H c (s) − (N − 1)

is decreasing in H c (s) which can be shown simply by computing the derivative. I omit this

step.

Lemma 10. An increase in J leads to an increase in H c
t and Ht in first-order stochastic

dominance and thus an increase in Mt 𝜇Ht and Cit at all t.

Proof. From the proof of Lemma 8, we have

¤H c
t = 𝜆 f

K
[
G −H c

t
]
+M

[
H c
t − (H c

t )N
]

J −Mt
.
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Holding fixed H c
t , the right-hand side is decreasing in F . By standard comparison argu-

ments for differential equations it follows thatH c
t must decrease pointwise and thus increase

in the sense of first-order stochastic dominance.

Also, from Lemma 8, we have

¤Ht =
A
Mt

[(H c
t )N −Ht].

Since Mt is unaffected and H c
t is lower pointwise when F increases, Ht must also be lower

pointwise. Thus Ht increases in the sense of first-order stochastic dominance. It follows

immediately that Mt 𝜇Ht increases. By Part 8 of Theorem 1 Cit = I (Mt 𝜇Ht )
1

𝜎−1 so it must

increase as well.

Lemma 11. An increase in J leads to an increase in steady state ad revenue 𝜋𝕂A.

Proof. By Lemma 10, an increase in J leads to an increase in H c in first-order stochastic

dominance and then following the same steps as in Lemma 9, we see that this leads to an

increase in steady state ad revenue 𝜋𝕂A.

Lemma 12. An increase in 𝜖 leads to a decrease inCit at each point in time and an increase

in steady state ad revenue 𝜋𝕂A and if K ≤ 1, steady state platform consumption X .

Proof. An increase in 𝜖 leads to a decrease in A since (9) is submodular in 𝜖 and akt . By

Lemma 9 this leads to an increase in steady state ad revenue 𝜋𝕂A and in turn platform

investment (31) and thus platform quality. Since X = K
1

𝜖−1 𝜈 (A)qt and qt increased while A

decreased, if K ≤ 1 then X must increase.

Lemma 13. An increase in K has no effects on ad revenue 𝜋𝕂tA at any time t and leads to

an increase in steady state platform consumption X .

Proof. As seen from (14), the equilibrium ad revenue 𝜋𝕂tA does not depend on K. In

steady state, using (31)

X = K
1

𝜖−1
ℓ
𝜑

𝕂

𝛿
=

1
𝛿
K

1
𝜖−1 −𝜑

(
𝜑𝛿𝜋𝕂A(𝜖 − 1)

(𝛿 + 𝜌)

)𝜑
.

This is increasing in K if the coefficient 𝜖 − 1 ≤ 1/𝜑. This is a necessary condition for an

equilibrium to exist as shown in Lemma 1.
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C. Proofs for Section 7

The following Theorem 3 characterizes the general equilibrium of the model introduced

at the start of Section 7.

Theorem 3. Theorem 1 applies except with with It replacing I in the equations listed in

the theorem. Moreover, in equilibrium, It = 𝜎
𝜎−1 (L − Kℓ𝕂t) at each t ∈ [0,∞). Therefore,

under the sufficient conditions for equilibrium existence and uniqueness given in Theorem

1, in equilibrium, investment and quality solve the ODE system

¤ℓkt =
𝜌 + 𝛿

1 − 𝜑
ℓkt −

𝜑

1 − 𝜑

𝜎
𝜎−1 (L −Kℓ𝕂t) 𝜋̂𝕂tA(𝜖 − 1)

Kqkt
ℓ
𝜑

kt

¤qkt = ℓ
𝜑

kt − 𝛿qkt

(33)

with boundary conditions

lim
t→∞

ℓkt =
𝜑𝛿 𝜎

𝜎−1 𝜋̂𝕂A(𝜖 − 1)
r + 𝛿 + 𝜑𝛿 𝜎

𝜎−1 𝜋̂𝕂A(𝜖 − 1)
L
K

qk0 = q0.

Above,

𝜋̂𝕂t =

∫ ∞

0

∫ ∞

t

1
𝜎Mt 𝜇Ht

e−
∫ s
t [ 𝜌+𝜆 f +𝜆 ez (v̂) ] dz ds [1 −Ot (v̂)] dv̂,

is the average ad price per unit of income at time t whereOt = (H c
t )N +N (H c

t )N−1(1−H c
t )

and 𝜋𝕂 = limt→∞ 𝜋𝕂t is the steady-state average ad price,

𝜋̂𝕂 =
1

𝜎M 𝜇H

∫ ∞

0

1 − NH c (s)N−1 + (N − 1)H c (s)N
𝜌 + 𝜆 f + 𝜆 e (s)

ds. (34)

Proof. That It = 𝜎
𝜎−1 (L − Kℓ𝕂t) follows from product market clearing. All other parts of

Theorem 3 are proven using analogous methods to those used to prove Theorem 1.

Proof of Proposition 1. The Proposition follows immediately from Theorem 3.

Proof of Theorem 2. To characterize the planner’s steady state investment, it suffices to take

as given A∗ and assume that we have already reached steady state for Ht . The Hamiltonian

for the planner’s problem for investment is

H(t , qt , 𝜆 t , ℓ𝕂t) =
[
(L −Kℓ𝕂t) (M 𝜇H )

1
𝜎−1

]1−𝜏 [
K

1
𝜖−1 𝜈 (A∗)qt

] 𝜏
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+ 𝜆 t

(
ℓ
𝜑

𝕂t − 𝛿qt
)

where 𝜆 t satisfies

𝜌𝜆 t − ¤𝜆 t =
[
(L −Kℓ𝕂t) (M 𝜇H )

1
𝜎−1

]1−𝜏
𝜏K

𝜏
𝜖−1 𝜈 (A∗)𝜏q𝜏−1

t − 𝛿𝜆 t .

Maximizing the Hamiltonian with respect to the control yields

𝜆 t𝜑ℓ
𝜑−1
𝕂t = (1 − 𝜏)K [L −Kℓ𝕂t]−𝜏

[
(M 𝜇H )

1
𝜎−1

]1−𝜏 [
K

1
𝜖−1 𝜈 (A∗)qt

] 𝜏
.

In steady state, 𝜆 t must therefore be a constant. We have

𝜆 t =

[
(L −Kℓ𝕂t) (M 𝜇H )

1
𝜎−1

]1−𝜏
𝜏K

𝜏
𝜖−1 𝜈 (A∗)𝜏q𝜏−1

t

𝛿 + 𝜌
.

Substituting ths into the previous equation, we have

𝜏
(L −Kℓ𝕂t) 𝜑ℓ𝜑−1

𝕂t

𝛿 + 𝜌
= (1 − 𝜏)Kqt .

In steady state, qt = ℓ
𝜑

𝕂t/𝛿 so then

𝜏
𝜑 (L −Kℓ𝕂t)

𝛿 + r = (1 − 𝜏)K ℓ𝕂t

𝛿
.

Rearranging gives

ℓ𝕂t =
𝜑𝛿 𝜏

1−𝜏
𝜌 + 𝛿 + 𝜑𝛿 𝜏

1−𝜏

L
K
.

The Hamiltonian is concave in both the state and the control and therefore satisfies the

Mangasarian sufficient conditions for an optimal control.

In the limit as 𝜌 → 0, the steady state ad rate chosen by the planner must maximize the

flow utility of consumers which amounts to (24).

Proofs of Propositions 2 and 3. These propositions follow straghtforwardly from Proposi-

tion 1 and Theorem 2.
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D. Discussion of Dynamics

In this appendix, I describe some methodological advantages of a dynamic analysis.

Consider an alternative one period model in which firms participate in multiple auctions

for a given consumer. In such a model, there will not exist a bidding equilibrium in sym-

metric strategies (and it is unclear if there are other asymmetric equilibria). It is easiest to

show this when values are supported on a [0, v] where v < ∞. Suppose that there was a

symmetric bidding equilibrium with increasing bidding strategies. Then a firm with value

v would have a profitable deviation to bidding a zero amount in one of the auctions it par-

ticipates on. This is because the firm is guaranteed to win all of the auctions it participates

on if it follows the equilibrium strategy. But, the firm has only unit demand for displaying

an ad. By deviating in this way, the firm can reduce its cost while still displaying an ad.

By spreading the auction competition out over time I am able to avoid this issue. Thus,

dynamics allows us to have an auction analysis in which consumers multi-home and there

is interplatform competition in the sale of ads.

Of course, we could consider a one period model where there is no interplatform com-

petition in the sale of ads and each firm participates in one auction each. There would be

some matching of firms to auctions which we would have to take a stance on. If N or A are

sufficiently large, then regardless of the matching some firms must participate on multiple

auctions—there aren’t enough distinct bidders to be allocated to fill up the auctions. In other

words, comparative statics on N or Awould have to be limited to a certain range where this

is not the case. This is unattractive for the model especially since A is endogenous. You

could of course assume N and A are sufficiently small so that so that not all auctions are

filled. But, these additional modeling assumptions, in my opinion, seem unnatural. An at-

tempt to explain them would probably appeal to unmodeled frictions such as the fact that it

takes time for firms to locate auctions for a given consumer. The dynamic modeling simply

makes this intuition formal.

Consider an alternative one period formulation with competitive pricing in the ad market

rather than auctions. The baseline model can be solved in a competitive pricing environ-

ment. However, in that model, ads would be sold consumer by consumer and it would be

as though the platforms inform firms about the identity i of the consumer when they make

their purchases. In reality, firms only see signals and they do not know if they correspond

to the same individual just as they do in the baseline model of Section 2. Of course, a

disadvantage of switching to competitive pricing is that future work can not explore the

model using ad auction level data. Moreover, its not clear how to solve the extended ver-
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sion of the model where platforms may have different data with competitive pricing. In this

model, we can not let platforms sell ads consumer by consumer as if the platforms know the

consumers’ identities because then the firms could combine the data they receive from the

different platforms. Thus, suppose each firm sees only signals of the consumers’ valuations

but not their identities when choosing which ads to purchase. Firms would have to do some

inference about the likelihood they will also purchase an ad for the same consumer on the

other platforms. This inference effect leads to complicated purchasing strategies that are

nontrivial to characterize.

E. Extension: Zero Prices

In this section, I give an informal argument that zero prices can arise, for some param-

eter conditions, in an equilibrium of a variant of the baseline model where platforms can

charge nonnegative prices. I rule out negative prices on the grounds that it is too difficult for

platforms to verify human usage as opposed to usage by bots. Under this premise, charging

a negative price is unsustainable for a platform.

It is easiest to make the point when there are an integer number K of atomic platforms

and when consumers have Cobb-Douglas utility as in Section 7. However, these assump-

tions are not central to the logic of the argument. The core of the argument is simply that

if consumers enjoy product consumption much more than platform consumption, then the

attention spent on a platform will decrease quickly in the price set by the platform. This is

because, if the consumer spends more attention on the platform, the consumer can spend

less income on consuming products. When the elasticity of attention with respect to price

is sufficiently high, it is better for a platform to rely solely on advertising to earn revenue.

Suppose that all platforms but platform 1 charge a zero price and have quality level q.

Let q1 denote platform 1’s quality level. Let p ≥ 0 denote the price charged by platform

1. Consumer i chooses how much attention x1 to allocate to platform 1 to maximize flow

utility which amounts to maximizing

(I − px1)1−𝜏 (M 𝜇H )
1−𝜏
𝜎−1

[
(x1q1)

𝜖−1
𝜖 + (K − 1)

(
1 − x1
K − 1

q
) 𝜖−1

𝜖

] 𝜏𝜖
𝜖−1

𝜈 (A)𝜏 .

The first two terms comprise product consumption and the second two terms comprise

platform consumption. Above, I have used the fact that the consumer will want to allocate

attention evenly across the K − 1 remaining platforms. After spending px1 units of income

on consuming platform 1, the consumer has only I − px1 left to spend on products.
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The first order condition for consumer i’s problem is

p(1 − 𝜏) (I − px1)−𝜏
[
(x1q1)

𝜖−1
𝜖 + (K − 1)

(
1 − x1
K − 1

q
) 𝜖−1

𝜖

] 𝜏𝜖
𝜖−1

=

(I − px1)1−𝜏𝜏

[
(x1q1)

𝜖−1
𝜖 + (K − 1)

(
1 − x1
K − 1

q
) 𝜖−1

𝜖

] 𝜏𝜖
𝜖−1 −1

×
[
q1(x1q1)

𝜖−1
𝜖

−1 − q(1 − x1
K − 1

q) 𝜖−1
𝜖

−1
]
.

Canceling out some terms and rearranging yields

p

[
(x1q1)

𝜖−1
𝜖 + (K − 1)

(
1 − x1
K − 1

q
) 𝜖−1

𝜖

]
=

𝜏

1 − 𝜏

[
q1(x1q1)

𝜖−1
𝜖

−1 − q
(
1 − x1
K − 1

q
) 𝜖−1

𝜖
−1

]
(I − px1)

which is linear in the price p.

Solving for p yields the inverse demand curve:33

p(x1) =

I
[
q1(x1q1)

𝜖−1
𝜖

−1 − q
(

1−x1
K−1 q

) 𝜖−1
𝜖

−1
]

1−𝜏
𝜏

[
(x1q1)

𝜖−1
𝜖 + (K − 1)

(
1−x1
K−1 q

) 𝜖−1
𝜖

]
+

[
q1(x1q1)

𝜖−1
𝜖

−1 − q
(

1−x1
K−1 q

) 𝜖−1
𝜖

−1
]
x1

.

Since I−px1 must be positive and p must be nonnegative, the domain of the inverse demand

curve is the set of demands x1 such that the numerator is nonnegative. That is, the domain

is

x1 ∈
[
0,

q𝜖−1
1

q𝜖−1
1 + (K − 1)q𝜖−1

]
.

This is intuitive: the domain consists of attention levels that are less than that which would

arise if platform 1 also charged a price of zero.

We can now formulate platform 1’s pricing problem which is to choose x1 in this domain

33One can see that the inverse demand curve is monotone since the objective is submodular in (p, x1).
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to maximize flow profit:

p(x1)x1 + 𝜋𝕂Ax1.

We are interested in parameter conditions for when

x1 =
q𝜖−1

1

q𝜖−1
1 + (K − 1)q𝜖−1

is optimal which corresponds to setting a zero price. This amounts to looking for parameter

conditions such that

d[p(x1)x1]
dx1

+ 𝜋𝕂A = p′(x1)x1 + p(x1) + 𝜋𝕂A > 0 (35)

for all x1 in the domain. This will happen if p(·) does not decrease too fast. Intuitively this

will be the case when 𝜏 is close to zero so that the consumer cares little about platform use

and so attention will be very sensitive to the price set by platform 1.

By inspection, if 𝜏 is sufficiently close to 0,

p(x1) ≈ I
𝜏

1 − 𝜏

q1(x1q1)
𝜖−1
𝜖

−1 − q
(

1−x1
K−1 q

) 𝜖−1
𝜖

−1

(x1q1)
𝜖−1
𝜖 + (K − 1)

(
1−x1
K−1 q

) 𝜖−1
𝜖

.

I show later that we can bound
d[p(x1)x1]

dx1

from below for all x1 in the domain by an amount that can be made arbitrarily close to 0 by

making 𝜏 sufficiently close to 0. Thus, when 𝜏 is sufficiently close to 0, it follows that (35)

holds for all x1 in the domain and a price of zero is optimal. I will take this fact as given

now and show it formally later.

I have therefore shown that platform 1 does not have a profitable deviation to charging

a positive price when 𝜏 is close to 0. In principle the platform could deviate both in its

investment strategy and in its pricing strategy. But, so far, our analysis has fixed an arbitrary

quality level for q1. For some value of 𝜏 , say 𝜏 (q1), which depends on q1 we have shown it

is not profitable to charge a positive price. Let q be relatively large and q be relatively small

and consider

𝜏∗ = inf
q1∈[q ,q ]

𝜏 (q1) < 1.

Then for parameter 𝜏 = 𝜏∗ it is never optimal for a platform to deviate to any quality
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q ∈ [0, q]. By setting q sufficiently high, investment costs are sufficiently high that it is

obviously not optimal to deviate in terms of investment to end up at any quality q ≥ q.

Similarly if q ≤ q for some q sufficiently low deviating by cutting back on investment is not

profitable because profits are too low at any positive price that the platform can set.

The analysis so far has assumed that the second order condition is satisfied. By inspec-

tion the second order condition is also satisifed since the objective is concave in the relevant

domain

x1 ∈
[
0,

q𝜖−1
1

q𝜖−1
1 + (K − 1)q𝜖−1

]
provided p ≥ 0 as we have assumed. We only need concavity over this domain since we

know any higher choice of attention is always suboptimal.

I will now show that we can bound the derivative of

p(x1)x1 =

I
[
q1(x1q1)

𝜖−1
𝜖

−1 − q
(

1−x1
K−1 q

) 𝜖−1
𝜖

−1
]
x1

1−𝜏
𝜏

[
(x1q1)

𝜖−1
𝜖 + (K − 1)

(
1−x1
K−1 q

) 𝜖−1
𝜖

]
+

[
q1(x1q1)

𝜖−1
𝜖

−1 − q
(

1−x1
K−1 q

) 𝜖−1
𝜖

−1
]
x1

from below by an amount arbitrarily close to 0 as claimed.

Define f such that

p(x1)x1 = I
f ′(x1)x1

1−𝜏
𝜏

𝜖
𝜖−1 f (x1) + f ′(x1)x1

.

Then

1
I

d[p(x1)x1]
dx1

=
f ′′(x1)x1 + f ′(x1)

1−𝜏
𝜏

𝜖
𝜖−1 f (x1) + f ′(x1)x1

− f ′(x1)x1[ 1−𝜏
𝜏

𝜖
𝜖−1 f (x1) + f ′(x1)x1

]2

[(
1 − 𝜏

𝜏

𝜖

𝜖 − 1
+ 1

)
f ′(x1) + f ′′(x1)x1

]
.

Can we bound this from below? Consider taking the limit as 𝜏 tends to 0. Then the above,

for a fixed x1, converges to 0. However, we need to make sure that the infimum of the above

over the entire range converges to 0. This will necessarily be the case if we can bound

f ′(x1), f ′′(x1), f (x1), and f ′(x1)x1. The concern is about points x1 near 0 since some of

these terms explode there. Suppose we know that for any 𝜏 close to 0 that it is not optimal
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to set x1 < 𝜖 for some 𝜖 > 0, then we are done since f ′(x1), f ′′(x1), f (x1), and f ′(x1)x1

are bounded on
[
𝜖 ,

q𝜖−1
1

q𝜖−1
1 +(K−1)q𝜖−1

]
To show this, note that

p(x)x + 𝜋𝕂Ax ≤ p(x)x + 𝜋𝕂A𝜖

whenever x ≤ 𝜖 . But

p(x)x ≤ I f ′(x)x
𝜖

𝜖−1 f (x) + f ′(x)x

for all 𝜏 ≤ 1/2. Then

p(x)x + 𝜋𝕂Ax ≤ sup
x∈[0,𝜖 ]

I
f ′(x)x

𝜖
𝜖−1 f (x) + f ′(x)x

+ 𝜋𝕂A𝜖

and the upper bound holds uniformly over all 𝜏 ≤ 1
2 . For some 𝜖 > 0 this right hand side is

always less than

𝜋𝕂A
q1

q1 + (K − 1)q .

Thus, there is some 𝜖 > 0 lower bound such that its not optimal to set x1 < 𝜖 for any

parameter 𝜏 ≤ 1/2.

F. Extension: Network Effects

I extend the baseline model to allow for network effects.

Setup

I redefine the CES aggregate for platform consumption to be

Xit =
[∫

𝕂

[𝜂 (xkt)𝜈 (akt)qktxikt]
𝜖−1
𝜖 dk

] 𝜖
𝜖−1

where 𝜂 (x) = x𝜁 where 𝜁 > 0. I retain all other aspects of the baseline model of Section 2.

Equilibrium Characterization

Theorem 4. Suppose that Â is the unique solution of maxa a𝜈 (a)
𝜖−1

1−𝜁 (𝜖−1) . If Â/𝜆 f < J

and (𝜖 − 1)/[1 − 𝜁 (𝜖 − 1)] < 1/𝜑, then there exists a unique equilibrium in which each

platform k ∈ 𝕂 receives a positive amount of attention xkt > 0 at all times t for any feasible
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initial conditions M0, H0, and q0. The equilibrium converges to a steady state and has the

following properties:

1. Consumer i’s demands for products are as in (5) and her demands for platforms are

as in (38).

2. Firm j sets prices as in (8).

3. Platform k displays ads at rate Â.

4. The size of consideration sets is given by (10) and the cdfs of the expected values of

firms inside and outside of them are characterized by (11) and (3) with Â in place of

A.

5. Firm j’s expected flow profits from sales are as in (12) and the rates at which firm j

matches with consumers are as in (13).

6. Firm j bids according to (14).

7. Platform k’s quality and investment solve the boundary-value problem (16) except

with (𝜖 − 1)/[1 − 𝜁 (𝜖 − 1)] in place of 𝜖 − 1.

8. Total consumer, firm, and platform surplus are as in Step 8 of Section 4 except

Xit = K
1

𝜖−1 −𝜁 𝜈 (Â)qt .

Moreover the sufficient conditions are almost necessary: if either Â/𝜆 f ≥ J or (𝜖 −1)/[1−
𝜁 (𝜖 − 1)] > 1/𝜑 then there does not exist an equilibrium.

Proof. As discussed in Section 8, the attention received by platform k solves

x𝜁kt =
x𝜁 (𝜖−1)
kt [𝜈 (akt)qkt]𝜖−1

Y
(36)

where

Y =

∫
𝕂

x𝜁 (𝜖−1)
kt [𝜈 (akt)qkt]𝜖−1 dk.

Solving (36) for xkt yields two possibilities:

xkt =
[𝜈 (akt)qkt]

𝜖−1
1−𝜁 (𝜖−1)

Y
1

1−𝜁 (𝜖−1)
(37)
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or xkt = 0. Under the equilibrium refinement, all platforms must receive positive attention

share (37). Integrating both sides of (37) over 𝕂 yields

Y
1

1−𝜁 (𝜖−1) =

∫
𝕂

[𝜈 (akt)qkt]
𝜖−1

1−𝜁 (𝜖−1) dk.

Then substituting into (37) gives

xkt =
[𝜈 (akt)qkt]

𝜖−1
1−𝜁 (𝜖−1)∫

𝕂
[𝜈 (akt)qkt]

𝜖−1
1−𝜁 (𝜖−1) dk

. (38)

Thus, the only change relative to the baseline model is that the elasticity of attention with

respect to platform quality is now higher. The rest of the equilibrium derivation follows the

same steps as in Section 4.

G. Extension: Data Heterogeneity

I extend the baseline model to allow for two groups of platforms, each of positive mea-

sure, who may have different data.

Setup

There are two groups of platforms z ∈ {1, 2}. Let mz denote the measure of platforms

in group z. As before, let vi j denote consumer i’s value for firm j’s product. Firm j receives

signal 𝜁zi j when bidding on a platform in group z. I assume that (vi j , 𝜁1i j , 𝜁2i j) ∼ Q defined

on [0,∞) × ℝ2 independently across i and j and that vi j has a finite mean. Let G denote

the joint cdf of 𝜁1i j and 𝜁2i j derived fromQ. I assume thatG has a continuous density g . I

retain the other aspects of the baseline model.

Solving for the Steady State Equilibrium

I now sketch the procedure to solve for the steady state equilibrium of the model. The

main properties of the equilibrium are summarized below in Theorem 5.

Much of the analysis of the baseline model ports over to this extended setup. Demands,

prices, ad rates, and the size of consideration sets will be as in equations (5), (6), (9), and

(10). However, we now must keep track of the joint distribution of the two signals inside

and outside of consideration sets.
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Let H c
t denote the joint cdf of signals outside of consideration sets at time t. Let Ht

denote the joint cdf of signals inside of consideration sets at time t. Let hct and ht be their

corresponding pdfs. LetH c
t (𝜁1 ,∞) denote lim𝜁→∞H c

t (𝜁1 , 𝜁 ) and letH c
t (∞, 𝜁2) be defined

analogously. Let us assume for now that the winner in an auction on a platform in group z

is the firm with the highest group z signal. Then the law of motion of ht must satisfy

¤[
Mtht (𝜻 )

]
= A

[
x1tNH c

t (𝜁1 ,∞)N−1hct (𝜻 ) + x2tNH c
t (∞, 𝜁2)N−1hct (𝜻 ) − ht (𝜻 )

]
. (39)

In (39), with abuse of notation, xzt denotes the total share of attention devoted to group

z platforms. The first two terms in the brackets represents the inflow coming from the

winners in the auctions on the two platform groups. The third term in the bracket represents

the outflow as the consumer forgets about products.

To derive the steady state h, first fix an initial guess of x1, the steady state level of x1t .

Then set x1t = x1, x2t = 1−x1,Mt = M and use the accounting identingMtht+( J−Mt)hct =
Fg to iterate (39) forward to convergence at each point 𝜻 in a fine grid on a region that

contains almost all ofG’s mass.

Given M and h, we next compute equilibrium bidding strategies. To do so let

𝜇H =

∫
ℝ2

𝔼[vi j |𝜻 ]h(𝜻 ) d𝜻 ,

𝜋𝕁 =
I

𝜎M 𝜇H
,

O1(·) = H c (·,∞)N−1 ,

and

O2(·) = H c (∞, ·)N−1.

Above, 𝜇H is the average value of the firms in consideration sets, 𝜋𝕁 is the coefficient of

firms’ flow profits,O1 determines the probability that a firm wins an auction if it takes place

on a platform in group 1, andO2 determines the probability that a firm wins an auction if it

takes place on a platform in group 2.

In a steady state, bidding strategies correspond to a pair of functions B = (B1 , B2).
Here, Bz : ℝ ⇒ [0,∞) maps firm j’s group z signal 𝜁zi j to its bid Bz (𝜁zi j) in a group

z auction for consumer i. To derive B, let 𝜻 i j = (𝜁1i j , 𝜁2i j) and let V (𝜻 i j) be firm j’s

61



continuation value from selling to consumer i at the time of auction entry if it knows 𝜻 i j
but does not know which platform hosts the auction.

More precisely,V satisfies the recursive equation

V (𝜻 i j) =
2∑︁
z=1

xzOz (𝜁zi j)
[

𝜋𝕁

𝜆 f + 𝜌
𝔼[vi j |𝜻 i j] +

𝜆 f

𝜆 f + 𝜌

𝜆 a

𝜆 a + 𝜌
V (𝜻 i j)

]
− xl

[∫ 𝜁zi j

−∞
Bz (s) dOz (s) +

[
1 −Oz (𝜁zi j)

] 𝜆 a

𝜆 a + 𝜌
V (𝜻 i j)

]
(40)

The first term in brackets is the discounted expected flow profit that firm j earns from

entering Ωit . It exits at rate 𝜆 f and subsequently enters another auction at rate 𝜆 a which

corresponds to the second term. On the second line, the first term in brackets is the expected

payment in a group z auction. The last term is the continuation value in the event that firm

j loses the auction, weighted by the probability that this happens.

Since auctions are second-price, in each auction, firm j simply bids the gain in its con-

tinuation value from winning the auction. Then,

Bz (𝜁li j) = 𝔼

[
𝜋𝕁

𝜆 f + 𝜌
vi j +

𝜆 f

𝜆 f + 𝜌

𝜆 a

𝜆 a + 𝜌
V (𝜻 i j)

���𝜁zi j , j ∈ Ωcit

]
− 𝔼

[
𝜆 a

𝜆 a + 𝜌
V (𝜻 i j)

���𝜁zi j , j ∈ Ωcit

]
= 𝔼

[
𝜋𝕁

𝜆 f + 𝜌
vi j −

𝜌

𝜆 f + 𝜌

𝜆 a

𝜆 a + 𝜌
V (𝜻 i j)

���𝜁zi j , j ∈ Ωcit

]
. (41)

Above, 𝜆 a = NA/( J −M) is the rate of auction entry. The expectation is conditional on

only the group z signal and the fact that the firm is outside the consideration set since this

is all that the firm knows when it bids.

Using (41) and (40), we can show that B is the fixed point of an operator 𝚲 := (Λ1 , Λ2)
where Λz : C+ (ℝ)2 ⇒ C+ (ℝ) takes in a pair of functions f = ( f1 , f2) and outputs another

function34

Λz ( f ) (·) = 𝔼


𝜋𝕁vi j + 𝜆 a

∑2
l=1 xz

∫ 𝜁li j

−∞ fl (s) dOl (s)
𝜆 f + 𝜌 + 𝜆 a

∑2
l=1 xlOl (𝜁zi j)

����𝜁zi j = ·, j ∈ Ωcit

 . (42)

It is easy to show that 𝚲 is a contraction with modulus 𝜆 a/(𝜆 a + 𝜆 f + 𝜌) with respect

to the sup-norm whenever values vi j are bounded above by some level v. For numerical

34C+ (ℝ) denotes the set of nonnegative continuous functions on ℝ.
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purposes, this will always be the case. Even without this bounded support assumption, we

see that 𝚲 is increasing. Thus, starting from an initial B such that Bz > Λz (B) for each

z ∈ {1, 2} it follows that {𝚲n (B)}∞n=1 is a decreasing sequence which converges to the fixed

point. Thus we can compute the equilibrium bidding strategies by iterating on (42).

In a steady state equilibrium, a platform in group z ∈ {1, 2} invests a constant level ℓ𝕂z
to mantain quality level qz = ℓ

𝜑

𝕂z/𝛿.

Let platform k belong to group z. The Hamiltonian for platform k’s optimization prob-

lem is

H(t , qkt , 𝜆 t , ℓkt) = 𝜋𝕂zA
q𝜖−1
kt

mzq𝜖−1
z + m−zq𝜖−1

−z
− ℓkt + 𝜆 t

(
ℓ
𝜑

kt − 𝛿qkt
)

where 𝜆 t , the costate variable, evolves according to

𝜌𝜆 t − ¤𝜆 t = 𝜋𝕂zA (𝜖 − 1)
q𝜖−2
kt

mzq𝜖−1
z + m−zq𝜖−1

−z
− 𝜆 t𝛿.

By the Maximum Principle, a necessary condition for optimality is that the control ℓkt
maximizes the Hamiltonian along the optimal trajectory:

𝜆 t𝜑ℓ
𝜑−1
kt = 1.

Under the conjectured stationary strategy then

𝜆 t𝜑ℓ
𝜑−1
𝕂z = 1.

This implies that 𝜆 t must be a constant 𝜆 . By the costate evolution equation,

𝜆 =
𝜋𝕂zA (𝜖 − 1)

𝜌 + 𝛿

q𝜖−2
z

mzq𝜖−1
z + m−zq𝜖−1

−z
.

Substituting, we have

𝜋𝕂zA (𝜖 − 1)
𝜌 + 𝛿

𝜑ℓ
𝜑−1
𝕂z = mzqz + m−z

(
q−z
qz

)𝜖−2
q−z.

This implies that

𝜋𝕂zA (𝜖 − 1)
𝜌 + 𝛿

𝜑ℓ
𝜑−1
𝕂z = mz

ℓ
𝜑

𝕂z

𝛿
+ m−z

(
ℓ𝕂−z
ℓ𝕂z

)𝜑 (𝜖−2) ℓ𝜑
𝕂−z
𝛿
.
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Dividing both sides by ℓ
𝜑

𝕂z/𝛿 we arrive at

𝛿𝜋𝕂zA (𝜖 − 1)
𝜌 + 𝛿

𝜑ℓ−1
𝕂z = mz + m−z

(
ℓ𝕂−z
ℓ𝕂z

)𝜑 (𝜖−1)
.

By symmetry by considering the problem of a platform k in group −z,

𝛿𝜋𝕂−zA (𝜖 − 1)
𝜌 + 𝛿

𝜑ℓ−1
𝕂−z = m−z + mz

(
ℓ𝕂z

ℓ𝕂−z

)𝜑 (𝜖−1)
.

Let y := ℓ𝕂z/ℓ𝕂−z. Using the above two equations, I derive

𝜋𝕂z

𝜋𝕂−z

1
y
=
mz + m−zy−𝜑 (𝜖−1)

m−z + mzy𝜑 (𝜖−1) .

Equivalently,

y =
(
𝜋𝕂z

𝜋𝕂−z

) 1
1−𝜑 (𝜖−1)

.

Thus,

ℓ𝕂z =
𝜑𝛿𝜋𝕂zA (𝜖 − 1)

𝜌 + 𝛿

1

mz + m−z
(
𝜋𝕂−z
𝜋𝕂z

) 𝜑 (𝜖−1)
1−𝜑(𝜖−1)

.

Note that if 𝜖 ≤ 2 then the Hamiltonian is jointly concave in the state and control and so I

have identified the optimal control.

ℓ𝕂z =
𝜑𝛿𝜋𝕂zA (𝜖 − 1)

𝜌 + 𝛿

1

mz + m−z
(
𝜋𝕂−z
𝜋𝕂z

) 𝜑(𝜖−1)
1−𝜑(𝜖−1)

(43)

From (43) we also have the quality level

qz =
ℓ
𝜑

𝕂z

𝛿

and attention share

xz =
mzq𝜖−1

z

mzq𝜖−1
z + m−zq𝜖−1

−z
=

mz
(
𝜋𝕂z
𝜋𝕂−z

) 𝜑 (𝜖−1)
1−𝜑(𝜖−1)

mz
(
𝜋𝕂z
𝜋𝕂−z

) 𝜑 (𝜖−1)
1−𝜑(𝜖−1) + m−z

(44)

of group z platforms.
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Consumer surplus is simply u(C , X)/r where

C = I (M 𝜇H )
1

𝜎−1

and

X =

( 2∑︁
z=1

mzq
𝜖−1
𝜖
z

) 𝜖
𝜖−1

are product and platform consumption respectively.

Summary of Computational Procedure

1. Guess a value of x1.

2. Iterate (39) forward to compute h.

3. Iterate (42) to compute per-unit income bid functions and average ad prices.

4. Check whether the guess of x1 aligns with (44).

5. If yes, done. If not, repeat with a revised guess.

All other equilibrium objects are characterized in closed form in terms of the output of this

algorithm and primitives. Though inefficient, one can simply run steps 2-4 for each guess

of x1 in a fine grid on [0, 1]. This is relatively fast and allows one to solve for all steady

state equilibria and in particular, check uniqueness.

Steady State Equilibrium Characterization

The following Theorem 5 summarizes the steady state equilibrium properties.

Theorem 5. Suppose that 𝜖 − 1 < 1/𝜑 and that A is the unique solution of maxa a𝜈 (a)𝜖−1.

In any steady state equilibrium with increasing bidding functions the following hold:

1. Consumer i’s demands for products are as in (5) and her demands for platforms are

as in (6).

2. Firm j sets prices as in (8).

3. Platform k displays ads at rate A as in (9).

4. The size of consideration sets is M = A/𝜆 f .
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5. Firm j’s expected flow profits from sales are as in (12).

6. Bidding functions B = (B1 , B2) for the two groups are the fixed point of the operator

𝚲 defined by (42) which is a contraction map whenever values are bounded.

7. The attention shares received by the two groups are given by (44).

8. The rates of investment by the two groups are given by (43).

Above, the condition 𝜖−1 < 1/𝜑 is almost a necessary condition for existence following

an anologous argument to Lemma 1. I only use it here because it guarantees that each

platform in a group employs the same investment strategy, a fact we took for granted in our

sketch of the steady state equilibrium derivation.

In order for a steady state equilibrium with increasing bidding strategies to exist, the

fixed point of 𝚲 must be increasing. The following condition, is sufficient for this to be so.

Condition 1. The following hold:35

1. The conditional distribution of 𝜁−zi j given 𝜁zi j under the steady state solution for

H c to (39) increases in first-order stochastic dominance when 𝜁zi j increases for each

z ∈ {1, 2}.

2. The conditional expectation 𝔼
[
vi j |𝜁1i j , 𝜁2i j

]
is nondecreasing in both 𝜁1i j and 𝜁2i j

and increasing in at least one of 𝜁1i j or 𝜁2i j .

This is a stochastic monotonicity condition which essentially states that having a higher

signal on either platform is good news to a firm about the consumer’s value for its product.

To prove that Condition 1 is sufficient for monotone bidding strategies I will use the

following generalization of Arzelà-Ascoli, which follows from Theorems 3.4.20 and 8.2.10

of Engelking (1977).

Theorem 6. A ⊂ C (ℝ+) is relatively compact in the topology of uniform convergence on

compact subsets of ℝ+ if and only if A is equicontinuous at each x ∈ ℝ+ and { f (x) | f ∈
A} ⊂ ℝ is bounded for each x ∈ ℝ+.

Lemma 14. Under Condition 1 the fixed point of 𝚲 defined in (42) is a pair of increasing

functions.
35With abuse of notation, we use the same symbols for both the signals and their realizations.

66



Proof. Let B1 , B2 be arbitrary bidding functions. Let 𝜏k be the time that firm j is invited to

its kth auction for consumer i. Let lk be the platform group that hosts the kth auction. If all

firms other than j bid according to B1 , B2, then firm j’s solves

V (𝜻 i j) = max
(bk )∞k=1

𝔼

[∫ ∞

0
𝜋𝕁vi j1 j∈Ωit ds −

∞∑︁
k=1

e− 𝜌𝜏kB (1)
lk
1bk>B

(1)
lk

����𝜻 i j] (45)

such that bk is 𝜎 (𝜁lk i j , 𝜏k , lk)-measurable. Above, B (1)
lk

denotes the highest bid of the N − 1
other bidders in the kth auction. I argue that if it is also optimal for firm j to bid according

to B1 , B2, then B1 , B2 must be increasing and therefore must satisfy (41), (40) and thus

must be the fixed point of the contraction (42). This guarantees that the fixed point of (42)

is necessarily increasing provided there exists such a pair of bidding functions B1 , B2.

I will prove that

𝜋𝕁

𝜆 f + 𝜌
𝔼

[
vi j |𝜻 i j

]
− 𝜌

𝜆 f + 𝜌

𝜆 a

𝜆 a + 𝜌
V (𝜻 i j) (46)

is nondecreasing in both of its arguments and increasing in one of them. This will ensure

that bidding strategies which satisfy (41) are increasing using Condition 1. Without loss of

generality suppose that 𝔼[vi j |𝜁1i j , 𝜁2i j] is increasing in its first argument.

Suppose for contradiction that there exists 𝜁 1 and 𝜁
2

with 𝜁 1 > 𝜁
1

such that

𝜋𝕁

𝜆 f + 𝜌
𝔼[vi j |𝜁1i j = 𝜁 1 , 𝜁2i j] −

𝜌

𝜆 f + 𝜌

𝜆 a

𝜆 a + 𝜌
V (𝜁 1 , 𝜁2i j)

<
𝜋𝕁

𝜆 f + 𝜌
𝔼[vi j |𝜁1i j = 𝜁

1
, 𝜁2i j] −

𝜌

𝜆 f + 𝜌

𝜆 a

𝜆 a + 𝜌
V (𝜁

1
, 𝜁2i j).

Rearranging yields

𝜋𝕁

𝜆 f + 𝜌
𝔼[vi j |𝜁1i j = 𝜁 1 , 𝜁2i j] −

𝜋𝕁

𝜆 f + 𝜌
𝔼[vi j |𝜁1i j = 𝜁

1
, 𝜁2i j]

<
𝜌

𝜆 f + 𝜌

𝜆 a

𝜆 a + 𝜌
V (𝜁 1 , 𝜁2i j) −

𝜌

𝜆 f + 𝜌

𝜆 a

𝜆 a + 𝜌
V (𝜁

1
, 𝜁2i j). (47)

I will show that the above inequality can not hold.

As seen in (45), the value function can be decomposed into two parts: one which arises

from flow profits from sales (the expectation of the first sum in (45)) and one which arises

from costs of advertising (the expectation of the second sum (45)). Let us write the value
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function of a firm j with signals 𝜁 1, 𝜁−li j to reflect this:

V (𝜁 li j , 𝜁−li j) = Πsales − Cad cost.

Now suppose a firm j with signal 𝜁
li j

deviates and bids as though its signal was 𝜁 li j .

Then its payoff is

𝔼
[
vi j

���𝜁li j = 𝜁
l
, 𝜁−li j

]
𝔼

[
vi j

���𝜁li j = 𝜁 l , 𝜁−li j
]Πsales − Cad cost ≤ V (𝜁

li j
, 𝜁−li j).

Substituting into (47), we therefore have,

𝜋𝕁

𝜆 f + 𝜌
𝔼[vi j |𝜁1i j = 𝜁 1 , 𝜁2i j] −

𝜋𝕁

𝜆 f + 𝜌
𝔼[vi j |𝜁1i j = 𝜁

1
, 𝜁2i j]

<
𝜌

𝜆 f + 𝜌

©­­«1 −
𝔼

[
vi j

���𝜁li j = 𝜁
l
, 𝜁−li j

]
𝔼

[
vi j

���𝜁li j = 𝜁 l , 𝜁−li j
] ª®®¬Πsales.

Since there are times when the firm is not in the consideration set,

Πsales ≤
𝜋𝕁

𝜌
𝔼

[
vi j

���𝜁li j = 𝜁 l , 𝜁−li j
]
.

Substituting into the RHS above, we obtain a contradiction. The proof that (46) is also

nondecreasing in its second argument is analogous. Now I have completed the first step of

the proof. The second step is to prove that there in fact exists a pair of bidding functions

B1 , B2 such that each firm optimally bids according to them if its rivals do (that is, firm j

solves (45)).

Let Lip(ℝ+) denote the set of 𝜋𝕁
𝜆 f +𝜌 -Lipschitz functions f such that f (y) ≤ 𝜋𝕁

𝜆 f +𝜌 y at

each y ∈ ℝ+. By Theorem 6 and Tychonoff’s Theorem, Lip(ℝ+)2 is compact in the product

topology. To ensure bidding strategies B1 , B2 live in Lip(ℝ+)2 we redefine signals so that,

with abuse of notation

𝜁li j = 𝔼[vi j |𝜁li j , j ∈ Ωcit].

Thus 𝜁li j ∈ ℝ+. Condition 1 ensures that there is a one to one mapping between old signals

and new signals. Moreover, now

Bl (𝜁li j) =
𝜋𝕁

𝜆 f + 𝜌
𝜁li j − 𝔼

[
𝜌

𝜆 f + 𝜌

𝜆 a

𝜆 a + 𝜌
V (𝜻 i j)

��𝜁li j , j ∈ Ωcit

]
(48)
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which is 𝜋𝕁
𝜆 f +𝜌 -Lipschitz sinceV is nondecreasing in both signals.

Let us take as given some input bidding functions Binput ∈ Lip(ℝ+)2. Let V be the

value function bidding optimally given this: set V equal to the RHS of (45) when B1, B2

are given by Binput . Next, define Boutput using (48). This map from Binput to Boutput is

continuous. Moreover it maps from Lip(ℝ+)2 into itself. Lip(ℝ+)2 is closed, convex, and

compact. Thus by Schauder’s fixed point theorem there exists a fixed point. Any such fixed

point is in increasing bidding stragies and therefore, must be the fixed point of (42).

H. Extension: Heterogeneity in Platform Productivity

I solve an extension of the baseline model in which platforms may differ in the produc-

tivity of their investments.

Setup

Platform k now solves

max
{ℓkt }

∫ ∞

0
e− 𝜌t

(
𝜋𝕂tA

q𝜖−1
kt∫

𝕂
q𝜖−1
zt dz

− 𝛼kℓkt

)
dt

where
¤qkt = ℓ

𝜑

kt − 𝛿qkt .

The only difference relative to the baseline model is the parameter 𝛼k > 0 which controls

the productivity of platform k. Let P denote the frequency distribution of 𝛼k , k ∈ 𝕂. I retain

all other aspects of the baseline model.

Equilibrium Characterization

Theorem 7. Suppose that A is the unique solution of maxa a𝜈 (a)𝜖−1 and 𝜖 < 1/𝜑. Then

there exists a unique equilibrium where platform k’s investment is

ℓkt =

(
1
𝛼

) 1
1−𝜑(𝜖−1)

ℓt

and quality level is

qkt =
(

1
𝛼

) 𝜑

1−𝜑(𝜖−1)
qt
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where ℓt and qt solve the ODE system

( 𝜌 + 𝛿) 1
𝜑
ℓt −

1 − 𝜑

𝜑
¤ℓt =

𝜋𝕂tA(𝜖 − 1)∫ (
1
𝛼

) 𝜑(𝜖−1)
1−𝜑(𝜖−1) dP (𝛼)

ℓ
𝜑
t

qt

¤qt = ℓ
𝜑
t − 𝛿qt

with given initial condition q0 and boundary at infinity

lim
t→∞

ℓt =
𝛿𝜋𝕂tA(𝜖 − 1)

( 𝜌 + 𝛿)
𝜑

𝛼k


∫ (

1
𝛼

) 𝜑 (𝜖−1)
1−𝜑(𝜖−1)

dP (𝛼)

−1

.

Proof. The Hamiltonian for platform k’s problem is

H(t , qkt , ℓkt , 𝜆 kt) = 𝜋𝕂tA
q𝜖−1
kt∫

𝕂
q𝜖−1
zt dz

− 𝛼kℓkt + 𝜆 t

(
ℓ
𝜑

kt − 𝛿qkt
)

where the costate variable 𝜆 t solves

𝜌𝜆 kt − ¤𝜆 kt = 𝜋𝕂tA(𝜖 − 1)
q𝜖−2
kt∫

𝕂
q𝜖−1
lt dl

− 𝜆 kt𝛿.

The FOC for maximizing the Hamiltonian yields

𝜆 kt =
𝛼k

𝜑
ℓ

1−𝜑
kt .

Differentiating both sides with respect to time yields

¤𝜆 kt = 𝛼k
1 − 𝜑

𝜑
ℓ
−𝜑
kt

¤ℓkt .

Then we have

( 𝜌 + 𝛿)𝛼k
𝜑
ℓ

1−𝜑
kt − 𝛼k

1 − 𝜑

𝜑
ℓ
−𝜑
kt

¤ℓkt = 𝜋𝕂tA(𝜖 − 1)
q𝜖−2
kt

Qt
(49)

where

Qt =
∫
𝕂

q𝜖−1
zt dz.

I first derive the steady-state equilibrium before returning to solve for the full dynamics.
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In steady state,

( 𝜌 + 𝛿)𝛼k
𝜑
ℓ

1−𝜑
kt = 𝜋𝕂tA(𝜖 − 1)

q𝜖−2
kt

Qt

and

qk =
ℓ
𝜑

k

𝛿
.

I obtain

( 𝜌 + 𝛿)𝛼k
𝜑
ℓ

1−𝜑
kt = 𝜋𝕂tA(𝜖 − 1)

ℓ
(𝜖−2)𝜑
k

𝛿𝜖−2Qt

which can be solved to yield

ℓk =

(
𝜋𝕂tA(𝜖 − 1)
𝛿𝜖−2Qt ( 𝜌 + 𝛿)

𝜑

𝛼k

) 1
1−𝜑 (𝜖−1)

.

This implies that in steady state,

qkt =
1
𝛿

(
𝜋𝕂tA(𝜖 − 1)
𝛿𝜖−2Qt ( 𝜌 + 𝛿)

𝜑

𝛼k

) 𝜑

1−𝜑(𝜖−1)

Then, using the definition ofQt we have

1
𝛿𝜖−1

∫ (
𝜋𝕂tA(𝜖 − 1)
𝛿𝜖−2Qt ( 𝜌 + 𝛿)

𝜑

𝛼

) 𝜑(𝜖−1)
1−𝜑 (𝜖−1)

dP (𝛼) = Qt

which can be solved to yield

Qt =


1
𝛿𝜖−1

∫ (
𝜋𝕂tA(𝜖 − 1)
𝛿𝜖−2( 𝜌 + 𝛿)

𝜑

𝛼

) 𝜑 (𝜖−1)
1−𝜑 (𝜖−1)

dP (𝛼)


1−𝜑 (𝜖−1)

.

Therefore, the steady-state level of investment is

ℓk =

(
𝜋𝕂tA(𝜖 − 1)
𝛿𝜖−2( 𝜌 + 𝛿)

𝜑

𝛼k

) 1
1−𝜑 (𝜖−1)


1

𝛿𝜖−1

∫ (
𝜋𝕂tA(𝜖 − 1)
𝛿𝜖−2( 𝜌 + 𝛿)

𝜑

𝛼

) 𝜑(𝜖−1)
1−𝜑(𝜖−1)

dP (𝛼)

−1

which simplifies to

ℓk =
𝛿𝜋𝕂tA(𝜖 − 1)

( 𝜌 + 𝛿)
𝜑

𝛼k


∫ (

1
𝛼

) 𝜑 (𝜖−1)
1−𝜑 (𝜖−1)

dP (𝛼)

−1

.
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Now I return to solve for dynamics away from steady state. Let me denote by ℓt the

investment and qt the quality of a platform that has 𝛼 = 1. I conjecture that

ℓkt =

(
1
𝛼

) 1
1−𝜑(𝜖−1)

ℓt .

This of course implies then that

qkt =
(

1
𝛼

) 𝜑

1−𝜑(𝜖−1)
qt .

Then we have from (49)

( 𝜌 + 𝛿) 1
𝜑
ℓ

1−𝜑
t − 1 − 𝜑

𝜑
ℓ
−𝜑
t

¤ℓt = 𝜋𝕂tA(𝜖 − 1)
q𝜖−2
t

Qt
.

By the conjecture, we have

Qt =
∫ (

1
𝛼

) 𝜑 (𝜖−1)
1−𝜑 (𝜖−1)

dP (𝛼)q𝜖−1
t .

Therefore

( 𝜌 + 𝛿) 1
𝜑
ℓ

1−𝜑
t − 1 − 𝜑

𝜑
ℓ
−𝜑
t

¤ℓt =
𝜋𝕂tA(𝜖 − 1)∫ (
1
𝛼

) 𝜑 (𝜖−1)
1−𝜑 (𝜖−1) dP (𝛼)

1
qt
.

From here, it is easy to use the same method as in the proof of Theorem 1 to verify the

conjecture and complete the rest of the proof.

I. Extension: Firm and Platform Entry

I extend the baseline model to allow for entry of firms and platforms.

Setup

To enter the market, a firm must pay a cost e𝕁 > 0 and a platform must pay a cost e𝕂 > 0.

I retain all other aspects of the baseline model of Section 2 except that in equilibrium, the

measure of firms F and the measure of platforms P are such that firms and platforms earn

zero profits net of entry costs.
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Steady-State Equilibrium Characterization

For the notion of steady state equilibrium, I assume that each platform enters with the

steady state quality level to keep the analysis simple. One might consider other conventions

such as having a given platform enter with some given quality level q0 that may differ from

steady state and then characterize transition dynamics for that platform while restricting

all other equilibrium properties in steady state. I will not explore that here. Under either

convention, the measure of firms in the steady state will be the same.

Theorem 8. Suppose that A is the unique solution of maxa a𝜈 (a)𝜖−1. If A/𝜆 f < J and

𝜖 ≤ 1/𝜑 then there exists a steady state equilibrium. If one exists, it is unique and has the

same properties as in Lemma 5 for a given J and K which satisfy

K =
𝜋𝕂A
e𝕂

(
1 − 𝜑𝛿 (𝜖 − 1)

𝜌 + (1 − 𝛼)𝛿

)
, (50)

and

J =

I
𝜎
− 𝜋𝕂A

e𝕁
. (51)

Proof. Equations 50 and (51) are simply the zero profit conditions. Note that in (51), 𝜋𝕂
depends on J . Thus, to prove uniqueness I must prove there is a unique solution for J in

(51). This follows by Lemma 11 which shows that 𝜋𝕂 is increasing in J . The other parts

of the theorem follows the same roadmap as in the proof of Proposition 1.

It is straightforward to extend most of the comparative statics for steady state in Ap-

pendix B to this setting.

J. Extension: Reserve Prices

I extend the baseline model to allow platforms to set reserve prices.

Setup

Each platform k sets a reserve price to maximize the expected revenue in each auction

taking as given the reserve prices chosen by its rivals. All other aspects of the model are as

in the baseline model of Section 2.
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Steady State Equilibrium Characterization

Theorem 9. Suppose that 𝜖 − 1 < 1/𝜑 and that A is the unique solution to maxa a𝜈 (a)𝜖−1.

In a steady state equilibrium, the following hold:

1. Consumer i’s demands for products are as in (5) and her demands for platforms are

as in (6).

2. Firm j sets prices as in (8).

3. Platform k displays ads at rate A.

4. The size of consideration sets is M = A/𝜆 f .

5. Firm j’s expected flow profits from sales are as in (12).

6. Firm j sets reserve price R =
𝜋𝕁

𝜆 f +𝜌Y whereY solves

Y =
1 −H c (Y )
hc (Y )

where

H c (Y ) = K
J −MG (Y )

and

hc (Y ) =
K
M g (Y ) [1 −H c (Y )N ]

NH c (Y )N−1 + J−M
M

[
1 −H c (Y )N

] .
7. Firm j bids according to

B(v̂i j) = 𝜋𝕁

∫ v̂i j

Y

1
𝜌 + 𝜆 f + 𝜆 aH c (s)N−1 ds + R

whenever v̂i j ≥ Y .

8. The cdf of the expected values of a consumer for firms outside of her consideration

sets solves

H c (s)N −
(

K
J −M

)N
G (Y )N

=

[
K
M
G (s) − J −M

M
H c (s)

] (
1 −

[
K

J −M

)N
G (Y )N

]
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for s ≥ Y .

9. Each platform k invests at rate (31).

Proof. It is clear that consumers’ demands and firms’ flow profits and prices will be the

same as in the baseline model of Section 2.

Each platform k sets the rate it displays ads to consumers to maximize flow utility:

A = arg max
akt≤a

𝜋𝕂
akt

1 −H c (Y )N
𝜈 (akt)𝜖−1 = arg max akt𝜈 (akt)𝜖−1

as before. Here 𝜋𝕂 denotes the average ad price in auction. If akt is the rate that ads are

displayed, then akt/[1 − H c (Y )N ] is the rate that auctions are held since an ad is only

displayed if one of the bidders has bid above the reserve.

Thus, in a steady state equilibrium, the rate that a firm enters an auction is now

𝜆 a =
NA

( J −M) [1 −H c (Y )N ]

whereas before M = A/𝜆 f .
In a second-price auction, a firm bids the gain its continuation value from winning the

auction. Thus

B(v̂i j) =
𝜋𝕁

𝜆 f + 𝜌
v̂i j +

𝜆 f

𝜆 f + 𝜌

𝜆 a

𝜆 a + 𝜌
V (v̂i j) −

𝜆 a

𝜆 a + 𝜌
V (v̂i j) (52)

whereV (v̂i j) is the continuation value from selling to consumer i at the time of entry into

an auction. It is defined recursively by the equation

V (v̂i j) =
[
1 −H (v̂i j)N−1] 𝜆 a

𝜆 a + 𝜌
V (v̂i j)+

H c (v̂i j)N−1
(

𝜋𝕁

𝜆 f + 𝜌
v̂i j +

𝜆 f

𝜆 f + 𝜌

𝜆 a

𝜆 a + 𝜌
V (v̂i j)

− 𝔼
[
max{B(v̂ (1) ) , R}|v̂i j > v̂ (1)

] )
(53)

whenever v̂i j ≥ Y . In this equation, v̂ (1) ∼ (H c)N−1 represents the highest expected value

of the other bidders in an auction.

Since the cutoff bidder must bid its value, given the reserve price R, it follows that

Y = R
𝜆 f + 𝜌

𝜋𝕁
.
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To ease notation, letO(v̂i j) = H c (v̂i j)N−1. Then

O(v̂i j)𝔼
[
max{B(v̂ (1) ) , R}|v̂i j > v̂ (1)

]
= RO(R) +

∫ v̂i j

Y
B(s)O′(s) ds.

Substituting into (53) yields

V (v̂i j)
(
1 − 𝜆 a

𝜆 a + 𝜌

)
= O(v̂i j)B(v̂i j) − RO(R) −

∫ v̂i j

Y
B(s)O′(s) ds

for v̂i j ≥ Y . Then substituting into (52)

B(v̂i j) =
𝜋𝕁

𝜆 f + 𝜌
v̂i j

− 𝜌

𝜆 f + 𝜌

𝜆 a

𝜌

[
O(v̂i j)B(v̂i j) − RO(R) −

∫ v̂i j

Y
B(s)O′(s) ds

]
.

Differentiating with respect to v̂i j , I solve explicitly for B′(v̂i j). Using the boundary condi-

tion B(Y ) = R , we find that

B(v̂i j) = 𝜋𝕁

∫ v̂i j

Y

1
𝜌 + 𝜆 f + 𝜆 aH c (s)N−1 ds + R

for v̂i j ≥ Y . Note that, any bidder with a value v̂i j < Y optimizes by bidding any amount

less than or equal to Y . However, in the event that a platform deviates to a lower, reserve

price, these bidders must bid their intrinsic values for the ad in that

B(v̂i j) =
𝜋𝕁

𝜆 f + 𝜌

when v̂i j ≤ Y since their continuation values are 0.

Next, we derive the steady state H and H c. Matching inflows with outflows gives,

NH c (s)N−1hc (s)
1 −H c (Y )N

= h(s). (54)

for all s ≥ Y . On the left we have the pdf of the highest expected values of the firms in the

ad auctions. On the right we have the pdf of the expected values of firms who are forgotten

uniformly at random.
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Then, integrating we have

H c (s)N −H c (Y )N = H (s)
(
1 −H c (Y )N

)
for s ≥ Y . Recall the accounting identity MH + ( J −M)H c = FG. Then

H c (s)N −H c (Y )N =

[
K
M
G (s) − J −M

M
H c (s)

] [
1 −H c (Y )N

]
for s ≥ Y . Using the fact that H (Y ) = 0, the accounting identity gives

H c (Y ) = K
J −MG (Y ). (55)

Substituting into the above equation, we find that

H c (s)N −
(

K
J −M

)N
G (Y )N

=

[
K
M
G (s) − J −M

M
H c (s)

] (
1 −

[
K

J −M

)N
G (Y )N

]
for s ≥ Y . Thus, givenY , this equation can be used to compute H c.

It will also be useful to derive hc (Y ) which we can do by using the equation (54) which

implues

NH c (Y )N−1hc (Y ) = h(Y )
(
1 −H c (Y )N

)
.

Then using an accounting identity, we have

NH c (Y )N−1hc (Y ) =
[
K
M
g (Y ) − J −M

M
hc (Y )

] [
1 − (H c (Y )N

]
which rearranges to

hc (Y ) =
K
M g (Y ) [1 −H c (Y )N ]

NH c (Y )N−1 + J−M
M

[
1 −H c (Y )N

] . (56)

I will now write down the optimality condition for the reserve price. Suppose that

platform k sets a reserve price that induces cutoff Ŷ . Then platform k’s expected profit in

an auction is:
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∫ ∞

Ŷ
B(s) [N (N − 1)H c (s)N−2(1 −H c (s))hc (s)] ds

+ Ŷ 𝜋𝕁

𝜆 f + 𝜌
N

[
1 −H c (Ŷ )

]
H c (Ŷ )N−1. (57)

Platform k sets Ŷ =Y to maximize the above expression. The necessary first order condition

for optimality is

− B(Y ) [N (N − 1)H c (Y )N−2 (1 −H c (Y )) hc (Y )]

+Y 𝜋𝕁

𝜆 f + 𝜌
N

[
(N − 1)H c (Y )N−2 − NH c (Y )N−1] hc (Y )

+ 𝜋𝕁

𝜆 f + 𝜌
N [1 −H c (Y )]H c (Y )N−1 = 0.

Simplifying, and using the fact that B(Y ) =Y , we arrive at the familiar equation

Y =
1 −H c (Y )
hc (Y ) .

Y is the solution to this simple equation but recall that H c and hc are themselves functions

ofY given by (55) and (56) respectively.

From here, given the average ad price 𝜋𝕂 which coincides with (57) evaluated at Ŷ =Y ,

platforms’ investment rates are determined as in the baseline model. The condition that

𝜖 − 1 < 1/𝜑 is used in this step to ensure that all paltforms follow the same investment

strategy. As seen in Lemma 1 it is “almost" a necessary condition for equilibrium existence.
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